Data integrity is becoming increasingly important as business data competencies mature. From companies leveraging data to drive business decisions to individuals relying on secure data storage — it's clear that having trust in the accuracy and consistency of your data is essential.
With the rise of applications using data for business analysis, there's a greater emphasis on having strong data integrity. Therefore, it's critical to understand what data integrity is and why it matters.
Read on for a full introduction to data integrity.
Data integrity is the term for how accurate, complete and consistent data is over its entire life cycle. It ensures that data is trustworthy and reliable for its intended purpose. If you’re data lacks integrity, you cannot be sure of any reliable data analytics outputs.
Achieving data integrity involves implementing processes and controls to prevent and detect errors, unauthorized access and data loss throughout the data's lifecycle. This maintains the credibility of your organization and helps to prevent data breaches. Data integrity also plays into your overall data quality.
Proper data validation and error checking can prevent sensitive data from being wrongly categorized or stored, reducing the risk of potential exposure.
(See why integrity is one part of the CIA triad for information security.)
Data integrity is the foundation of all data-driven decisions. Without it, organizations cannot trust their data to make informed business decisions. Organizations must understand the importance of data accuracy and consistency to prevent errors in their business processes.
By ensuring that the data they are capturing and storing is accurate, complete, and consistent, businesses can ensure the integrity of their data and reduce the risk of potential exposure. This also helps to protect organizations from reputational damage resulting from data breaches.
In addition, customers have come to expect that their data is kept safe and secure. By ensuring that your organization implements strong data integrity practices, you can protect your customer's trust in your business.
Having strong data integrity practices in place is essential for organizations to remain competitive and secure in the digital age.
Data integrity is often confused with data security, but there are some key differences between the two.
Both are important for ensuring that your systems run smoothly, they differ in how they protect and control your data.
Data integrity has many different types, each with unique characteristics and benefits. The most common types of data integrity are:
Physical integrity involves ensuring that physical systems or hardware are protected when a physical disaster occurs. This protects the wholeness and accuracy of data as it is stored and handled.
Data corruption caused by lost writes can be prevented through physical database integrity-checking mechanisms. These include error detection and correction algorithms. For example, if corruption is detected while data is in transit and cannot be fixed, the I/O request will fail, and the integrity of the data is kept.
(Read about disaster recovery planning.)
Logical integrity prevents data from being changed when being used in a relational database. This also ensures that data is consistent and accurate.
In general, logical integrity can be divided into four main categories:
Now that we can define data integrity, let’s look at what happens when you have integrity problems. While data integrity issues can occur from many different sources, a few common factors often lead to them.
If these common causes of data integrity issues are left unchecked, it can lead to serious consequences. These issues include:
It is, therefore, important to take preventative measures and protect your data from these potential threats.
Improving your data integrity begins with identifying the key issues present in your data. Here are some ways to identify data integrity issues:
Once you have identified the key issues, your next step is to prevent them from happening. Here are some prevention measures:
Data integrity is an important aspect of ensuring the accuracy and security of data, making it essential for organizations to maintain proper data integrity practices. With the right tools and processes in place, you can ensure your data is always secure and reliable.
Organizations can benefit from accurate, complete and consistent data by taking the time to assess and address data integrity issues. A robust data resilience strategy will enable businesses to manage their data assets for long-term success better.
See an error or have a suggestion? Please let us know by emailing ssg-blogs@splunk.com.
This posting does not necessarily represent Splunk's position, strategies or opinion.
The Splunk platform removes the barriers between data and action, empowering observability, IT and security teams to ensure their organizations are secure, resilient and innovative.
Founded in 2003, Splunk is a global company — with over 7,500 employees, Splunkers have received over 1,020 patents to date and availability in 21 regions around the world — and offers an open, extensible data platform that supports shared data across any environment so that all teams in an organization can get end-to-end visibility, with context, for every interaction and business process. Build a strong data foundation with Splunk.