The Complete Guide to CI/CD Pipeline Monitoring: Metrics, Tools, and Best Practices for Delivery Visibility

Key Takeaways

  • CI/CD pipelines are as critical as production environments and must be monitored to detect delays, failures, and drift before they affect users.
  • Metrics like deployment frequency, MTTR, and change failure rate offer fast signals for release health, but only gain value when correlated with logs and traces.
  • Standardizing, alerting, and templatizing pipeline observability through platform engineering drives reliability, speed, and scalability.

The new delivery reality: CI/CD pipelines need deep visibility

In today’s fast-moving DevOps-centric world, new application releases are delivered continuously, often with the added complexity of AI/ML integrations and evolving security requirements. Simply monitoring applications or infrastructure is no longer enough. To ensure system health and deliver a positive user experience, teams need deeper and more complete visibility into the CI/CD pipelines that power integration and release velocity.

CI/CD pipelines form the backbone of continuous software delivery, connecting development with production.

In this article, we’ll explore why CI/CD monitoring is essential, the key metrics that define pipeline performance, and best practices for observability that link development workflows with operational excellence.

Why CI/CD monitoring matters more than ever

Continuous integration/continuous delivery (CI/CD) pipelines are distinct from runtime environments, but they are deeply intertwined. A healthy pipeline enables development teams to write, build, test, and deploy code and configuration changes continuously — ideally automatically — with each new commit or merge.

Problems that occur inside the CI/CD system create a ripple effect, one that often leads to degraded application performance or missed delivery timelines. Even the best-written code won't meet user expectations if it’s blocked, delayed, or misconfigured during delivery.

(Related reading: the product development lifecycle.)

Real-world CI/CD failure scenarios

Poor pipeline visibility creates significant issues, impacting release cycles and developer efficiency. These problems often fall into distinct failure categories:

Deployment delays

Slow or unstable CI/CD operations hinder rapid releases, delaying critical bug fixes. A spike in queue time can delay hotfixes during an outage, increasing Mean Time To Recovery (MTTR) and customer churn. Flaky tests causing random build failures also erode developer trust and contribute to these delays.

Test coverage issues

Without full visibility, detecting problems early is challenging. Bottlenecks like build delays or flaky tests may lead teams to skip important test cases, reducing coverage and increasing production bugs.

Technical debt in the delivery process

Technical debt extends beyond code, all the way into the release process. Lack of visibility often forces teams to rely on manual workarounds or custom scripts, quick fixes for release. Unfortunately, these ad-hoc solutions obscure failure points, making the pipeline harder to debug, scale, or improve.

For example:

Reduced deployment agility

When teams lack insight into code flow, adapting to changes (e.g., switching cloud providers or modifying infrastructure) becomes slower and riskier. Visibility enables safe, confident iteration.

A quick overview of CI/CD pipeline stages

Before diving into what to measure, it’s helpful to understand the typical stages of a CI/CD pipeline. While implementations vary, most follow a common structure:

  1. Source control and code commit
  2. Build and artifact creation
  3. Test and validation
  4. Staging and pre-prod deploy
  5. Production release

Each of these stages is an opportunity to detect issues early, and each has distinct telemetry points worth monitoring. For a deeper dive into the CI/CD stages and how they connect, read our full guide to CI/CD pipeline architecture.

Key metrics for monitoring CI/CD pipelines

To prevent the inefficiencies and risks described above, teams must monitor CI/CD workflows as thoroughly as they monitor application environments. These metrics serve as critical signals for identifying friction, failures, and optimization opportunities within the pipeline:

Tracking these metrics gives you the foundation for CI/CD performance analysis. But the true power lies in correlating them with runtime telemetry from the applications themselves.

Benchmarks: What does a healthy CI/CD pipeline look like?

While ideal metrics vary by organization, there are industry-accepted targets that help teams gauge maturity. Here are rough benchmarks that you can adapt for your unique business and process:

Regularly tracking these metrics and trending them over time helps teams spot regressions and continuously improve delivery efficiency.

Correlating pipeline metrics with runtime performance

CI/CD metrics shouldn’t exist in isolation. When connected with application logs, traces, and performance data, they tell a more complete story and enable faster problem-solving. For example:

Correlating CI/CD metrics with operational signals helps you pinpoint whether issues stem from delivery mechanics, code quality, or infrastructure. And that means smarter triage.

Best practices for monitoring CI/CD pipelines

Once you've implemented an observability platform that connects CI/CD pipelines with applications and infrastructure, it's important to turn that visibility into action. Strong CI/CD monitoring uncovers bottlenecks, and it also fuels faster feedback loops, more reliable releases, and better user experiences.

Here are five best practices to maximize the value of your pipeline telemetry:

Common CI/CD tools and observability integration points

Modern CI/CD pipelines are built using a variety of tools that handle different stages of the process. Each tool provides integration points for telemetry and monitoring, which should be tapped into for full pipeline observability.

Popular CI/CD tools include:

To create a complete picture of code-to-production health, you’ll first instrument these tools to emit logs, metrics, and traces, and then you feed that data into a unified observability platform. This visibility lets you troubleshoot failures at any stage, whether it's a broken test in GitHub Actions or a failed deployment in ArgoCD.

(See how observability as code (OaC) integrates observability directly into the CI/CD pipeline.)

The role of observability platforms in pipeline monitoring

To gain actionable insight, CI/CD monitoring must integrate with application performance and infrastructure telemetry. Platforms like Splunk Observability Cloud provide unified visibility, helping teams connect delivery metrics to runtime behavior in real time.

By using tools such as Splunk Application Performance Monitoring and Splunk Infrastructure Monitoring, teams can correlate CI/CD performance with logs, metrics, and traces across the software lifecycle. This end-to-end observability ensures that performance issues are resolved faster, before they reach users.

Security and compliance considerations in CI/CD monitoring

Observability isn't just about speed. It also helps enforce security and compliance across delivery workflows. With the rise of supply chain threats and policy mandates, it's increasingly important to monitor for:

By integrating security-focused signals into your CI/CD observability strategy, you ensure releases are not just fast — but also safe and accountable.

Make your pipeline a performance asset

In modern software delivery, CI/CD pipelines are not tools for developers — they are core components of product and customer experience. Monitoring these pipelines with the same rigor applied to applications and infrastructure is essential for sustaining velocity, quality, and customer satisfaction.

By correlating CI/CD data with other application metrics, traces, and log analytics by using tools like Splunk Application Performance Monitoring and Splunk Infrastructure Monitoring, you put yourself in the strongest position to optimize performance and delight your users, even in fast-moving continuous delivery chains.

Ready to gain full visibility and control of your CI/CD delivery process? Start your end-to-end observability journey today with a free trial of Splunk Observability Cloud. Try it for yourself for 14 days.

FAQs about Monitoring CI/CD Pipelines

What is CI/CD pipeline monitoring?
Key metrics include deployment frequency, lead time for changes, deployment time, change failure rate, mean time to recovery (MTTR), and queue time.
How do observability platforms support CI/CD monitoring?
Observability platforms like Splunk Observability Cloud correlate pipeline metrics with application logs, traces, and infrastructure telemetry, enabling faster troubleshooting and deeper delivery insights.
What CI/CD tools integrate with observability platforms?
Common integrations include GitHub Actions, Jenkins, ArgoCD, Terraform, and GitLab. These tools emit logs and metrics that feed into centralized dashboards.

Related Articles

The Bulkhead and Sidecar Design Patterns for Microservices & Incident Resolution
Learn
3 Minute Read

The Bulkhead and Sidecar Design Patterns for Microservices & Incident Resolution

This article looks at Bulkhead and Sidecar design patterns, including how they’re used in microservice designs — and how they help overall incident support.
Content Delivery Networks (CDNs) vs. Load Balancers: What’s The Difference?
Learn
3 Minute Read

Content Delivery Networks (CDNs) vs. Load Balancers: What’s The Difference?

CDNs and load balancers fulfill similar roles, but they are different tools. This article breaks down the differences so you can decide which is right for you.
Best DevOps Books: The Definitive List
Learn
4 Minute Read

Best DevOps Books: The Definitive List

In this blog post we’ll look at the core, fundamental books that have played the largest role in creating the modern DevOps movement.
Kubernetes 101: How To Set Up “Vanilla” Kubernetes
Learn
4 Minute Read

Kubernetes 101: How To Set Up “Vanilla” Kubernetes

Kubernetes 101: Set up the most basic K8s cluster — also known as Vanilla Kubernetes — with this hands-on tutorial that gets you started quickly and easily.
Network vs. Application Performance Monitoring: What's The Difference?
Learn
5 Minute Read

Network vs. Application Performance Monitoring: What's The Difference?

Monitoring networks and application performance are different practices. Understand the changes and see how, together, both can offer end-to-end observability.
Monitoring Windows Infrastructure: Tools, Apps, Metrics & Best Practices
Learn
3 Minute Read

Monitoring Windows Infrastructure: Tools, Apps, Metrics & Best Practices

Learn how to monitor your Windows infrastructure, including the best tools and apps to use, the top metrics to monitor and how to analyze those metrics.
NoOps Explained: How Does NoOps Compare with DevOps?
Learn
5 Minute Read

NoOps Explained: How Does NoOps Compare with DevOps?

Take a look at NoOps, the concept of automating IT and development: how it works, pros and cons and whether it’s an evolution — or the end — of DevOps.
How To Prepare for a Site Reliability Engineer (SRE) Interview
Learn
4 Minute Read

How To Prepare for a Site Reliability Engineer (SRE) Interview

Prepare for your SRE interviews. These are common questions and answers to expect in any site reliability engineer interview.
Adaptive Thresholding with Splunk's Density Function
Learn
3 Minute Read

Adaptive Thresholding with Splunk's Density Function

Past data supports adaptive thresholding with Splunk. Learn how — and when — to use the probability density function to create adaptive thresholding.