What is DevSecOps?

Freshen up how you build security into your software pipeline. In this article, we’re setting you up for DevSecOps success with the seven core principles:

  1. Shift left security
  2. Holistic automation
  3. Continuous security testing
  4. Collaborative culture & communication
  5. Security as code
  6. Observability
  7. Continuous improvement

We’ll also set the stage with a bit of DevSecOps overview and then point you on your way with some best practices for implementing DevSecOps. Let’s get started.

DevSecOps overview

DevSecOps is an evolution of the DevOps methodology. Its goal is to enhance the way developers, IT operations, QA and InfoSec teams approach security in the software development lifecycle (SDLC). Despite the focus of DevOps teams toward improving software quality, security often remains an afterthought.

As we know, security serves a critical goal toward software quality that must be baked into the SDLC process — early and thoroughly all phases of the lifecycle. So, we can think of DevSecOps as an integration of culture, responsibility, tools and best practices for security throughout the SDLC pipeline, across all activities:

The value & benefit of DevSecOps

DevSecOps doesn’t just provide enhanced application security — it front-loads considerations like security risks and vulnerabilities much earlier in the development cycle, helping to avoid surprises later.

Because DevSecOps relies heavily on automated security tools, its ultimate value is generated from the integration of security into the DevOps continuous development process, essentially making it possible for the organization to embrace “continuous security.” As security threats continue to evolve in their sophistication, DevSecOps provides a strong tactical methodology for mitigating them, giving security testing a critical and much more visible role in the software development life cycle.

Finally, DevSecOps enables a centralized understanding across the entire team development environment — QE, DevOps, SRE and security — giving teams the ability to align on work processes and objectives without disrupting the workflow.

Not sure what DevSecOps might mean for your organization? Here are some areas that it can absolutely support:

And with that background, let’s take a look at how we actually implement DevSecOps.

DevSecOps concepts & principles

So, just how do we integrate security? Let’s review the key principles of DevSecOps that teams should be working into their SDLC workflows.

1. Shift left security

DevSecOps teams work with cybersecurity experts early during the SDLC process, a major shift from traditional DevOps. In DevSecOps, cybersecurity becomes a shared responsibility of all members of the DevSecOps teams. That means that software design and implementation follows security best practices, considering areas like:

When shifting security left (towards the beginning of the SDLC), every software build is configured for security — optimized for performance, cost, time to market and other key business goals. This enables the team to identify early the security risk and exposure, enabling a secure build for every integration into the CI/CD pipeline.

(Read more about shift left security.)

2. Holistic automation

Adopt end-to-end automation for extensive testing and CI/CD processing. Within DevSecOps, automation is adopted as a strategic and well-informed decision— instead of merely automating any and all manual processes. After all, automating waste processes only compromises software quality.

In such cases, any rework to address quality issues tend to come at the expense of security performance. This practice goes against the concept of DevSecOps.

Instead, DevSecOps teams ensure that cybersecurity testing is thoroughly integrated into the automation processing, checking for:

3. Continuous security testing

The practice of Continuous Testing is extended by introducing automated testing functions that analyze build quality for security vulnerabilities. Within DevSecOps, Devs and QA teams collectively adopt the responsibility for improving software quality by continuously testing every build — in fact, the process is integrated into the CI/CD pipeline. These include:

You can also develop a threat model and establish security policies early during the SDLC process. Automated remediation tools may be adopted to address frequent vulnerabilities that are introduced as Devs and QA teams follow rapid release cycles and fast sprints at the pace of DevOps.

(Learn about autonomous testing, an emerging technology that harnesses ML to create and drive software testing.)

4. Collaborative culture & communication

Organizations are expected to make it easier for DevSecOps team members to collaborate and communicate. In a traditional enterprise IT setting, Devs, QA, Ops and InfoSec teams tend to work in silos, each team adopting their own policies and objectives. These goals are often conflicting and ultimately require a superseding policy that dictates the priority objectives.

From a DevSecOps perspective, this is impractical: An unknown consequence, security malpractice or un-informed decision can have a lasting negative impact on the overall software quality and performance.

5. Security as code

To make it easier for Devs and QA teams to configure and develop customized automation workflows for security testing, users can treat security policies, procedures and controls as code.

Security as Code ensures that continuous and automated security testing does not introduce unnecessary cost and delays to the SDLC processing. Security testing processes run alongside functional testing within the automated CI/CD workflows — Devs and QA teams can automatically work on the results and improve security performance with the programmable approach to security, as the tools, metrics, testing scope and configurations are reused.

The testing procedure also follows consistent policies, which are agreed upon during the security planning and initial design phase.

6. Traceability, auditability & visibility

One of the most important goals of DevSecOps is to deliver insights that help create a reliable environment for achieving the desired security performance of the SDLC pipeline. In order to achieve this goal, DevSecOps follows three characteristics:

The work that sums up these concepts is observability. Learn more about the benefits of Observability and Explainability in SDLC in this blog post by Splunker Sandeep Kampa on DevOps.com.

7. Continuous improvement

Since security threats continue to evolve and new development sprints can be exposed to different security risks, DevSecOps aims to iteratively improve the security capability by incorporating feedback on a continuous basis. This feedback comes from…

Make provision in the beginning to ensure that security related feedback can be incorporated across iterative sprints and release cycles.

(Track your security operations success with these metrics.)

Challenges of succeeding at DevSecOps

OK! These concepts clearly highlight just how important it is to build security into the entire software development lifecycle. So, why are dev teams still struggling so much? Some common obstacles that teams experience are:

Best practices for succeeding at DevSecOps

DevSecOps is part strategy, part toolkit, part training and part cultural shift. That means, unfortunately, there’s no universal playbook on how to “do DevSecOps”.

Still, armed with the seven core concepts and these best practices, you’ll be well on your way!

DevSecOps enables speedier, reliable software delivery

By following DevSecOps principles, enterprise IT teams can achieve two important goals: speed of SDLC release cycles and reliable software delivery in context of the evolving security risks, changing user expectations and strong regulations applicable to different industries and geographic locations.

FAQs about DevSecOps

What is DevSecOps?
DevSecOps is a philosophy and set of practices that integrates security into every phase of the software development lifecycle, combining development, security, and operations.
Why is DevSecOps important?
DevSecOps is important because it helps organizations deliver secure software faster by embedding security practices into the development process, reducing vulnerabilities and risks.
What are the key principles of DevSecOps?
Key principles of DevSecOps include automation, collaboration, continuous integration and delivery, shift-left security, and ongoing monitoring.
How does DevSecOps differ from traditional security approaches?
DevSecOps differs from traditional security approaches by integrating security early and throughout the development process, rather than treating it as a separate, final step.
What are some benefits of implementing DevSecOps?
Benefits of implementing DevSecOps include faster delivery of secure software, improved collaboration between teams, reduced security risks, and more efficient compliance.

Related Articles

Static Code Analysis: The Complete Guide to Getting Started with SCA
Learn
10 Minute Read

Static Code Analysis: The Complete Guide to Getting Started with SCA

Static code analysis examines code without running it, and it shifts security and quality checks left, into the earliest stages of software development.
From Idea to Deployment: How To Build a Practical AI Roadmap
Learn
6 Minute Read

From Idea to Deployment: How To Build a Practical AI Roadmap

AI systems are everywhere, but how many organizations have rolled it out successfully? Use a roadmap to run AI systems risk-free and without sacrificing quality.
Cybersecurity Jobs in 2026: Top Roles, Responsibilities, and Skills
Learn
8 Minute Read

Cybersecurity Jobs in 2026: Top Roles, Responsibilities, and Skills

In this post, we'll look at roles and responsibilities in the cybersecurity domain including skills required and average annual salary.
Serverless Architecture & Computing: Pros, Cons, Best Fits, and Solving Challenges
Learn
9 Minute Read

Serverless Architecture & Computing: Pros, Cons, Best Fits, and Solving Challenges

💻 🌆 Serverless architecture is just another way of saying, “We’ll design the apps and software, you make the backend work.” Get all the details here.
State of DevOps 2025: Review of the DORA Report on AI Assisted Software Development
Learn
6 Minute Read

State of DevOps 2025: Review of the DORA Report on AI Assisted Software Development

Learn about the latest DORA Report on AI-Assisted Software Development, the most recent publication in the State of DevOps series.
Incident Command Systems: How To Establish an ICS
Learn
7 Minute Read

Incident Command Systems: How To Establish an ICS

When a serious, on-scene incident occurs, you need a system that is both structured and flexible. The Incident Command System provides that framework. Learn more here.
KubeCon + Cloud NativeCon 2025: The Attendees’ Guide
Learn
6 Minute Read

KubeCon + Cloud NativeCon 2025: The Attendees’ Guide

Get ready for KubeCon + Cloud NativeCon North America 2025 in Atlanta! Discover key tracks, travel tips, hotel deals, and everything attendees need to know.
Information Lifecycle Management Explained: The Five Essential Stages for Data Management and Compliance
Learn
5 Minute Read

Information Lifecycle Management Explained: The Five Essential Stages for Data Management and Compliance

Learn the five stages of Information Lifecycle Management (ILM) to optimize data value, reduce costs, ensure security, and stay compliant with regulations.
LLM Observability Explained: Prevent Hallucinations, Manage Drift, Control Costs
Learn
7 Minute Read

LLM Observability Explained: Prevent Hallucinations, Manage Drift, Control Costs

LLM observability is critical for scaling AI systems. Learn how proper tracking helps to cut costs, prevent hallucinations, and build trustworthy LLM apps.