What Is Attack Surface Management? A Complete Guide To ASM

Key Takeaways

  • Your attack surface is bigger than you think: Cloud, SaaS, mobile, hybrid work, and third-party vendors have created a sprawling, ever-changing set of digital exposures, making ASM essential for visibility and control.
  • Continuous, proactive management is critical: Attack surface management means security teams can discover, prioritize, and remediate risks in real time, minimizing the window of opportunity for attackers.
  • Integrated tools and automation are must-haves: Effective ASM combines automated asset discovery, risk-based prioritization, and seamless integration with existing security workflows to help teams stay ahead of evolving threats.

ASM Is no longer optional. The number of entry points into your organization is infinite. Cloud infrastructure, SaaS apps, mobile devices, hybrid work, and third-party vendors have all contributed to a sprawling and often invisible digital footprint — what’s known as the attack surface.

That expansion isn’t slowing down. On average, 100+ new vulnerabilities emerge every day, creating an overwhelming burden on already stretched security teams. And those are the vulnerabilities we know about!

This is where attack surface management (ASM) comes in.

Defining attack surface management

Attack Surface Management (ASM) is the continuous process of discovering, monitoring, evaluating, and reducing all the exposure points across your digital ecosystem. The goal is simple: make the attack surface visible and manageable, so attackers don’t find the gaps before you do.

ASM helps answer questions like:

ASM gives security teams the context and control needed to proactively manage risk, and not just respond after the fact. With threat actors exploiting weaknesses faster than ever, ASM helps shift organizations toward a more resilient, prevention-first security posture.

Overview: What is the attack surface?

An attack surface is the sum total of all possible ways an attacker could gain access to your environment, whether through exposed infrastructure, human error, unmonitored third-party tools, or forgotten test servers.

It includes every internet-facing asset, every internal system or endpoint, every third-party integration, every single human entry point. In short: your attack surface is not only about technology, it’s about anything that could be exploited to compromise your business.

 see primer on what constitutes an attack surface: What Is an Attack Surface?

Attack surface vs. attack vector

An attack surface is what’s exposed. An attack vector is how it’s attacked. ASM focuses on reducing exposed assets, thereby limiting attacker options.

Why ASM matters now

Every year, organizations grow more connected — and more exposed. According to recent industry reports:

With digital infrastructure evolving faster than security practices, it’s easy to lose visibility over what’s live, what’s vulnerable, and what’s connected. ASM helps close that visibility gap.

Without ASM, most organizations are flying blind across parts of their infrastructure, leaving shadow assets and outdated systems exposed to increasingly automated and opportunistic attackers.

Benefits of attack service management

What ASM looks like in practice: A four-stage lifecycle

ASM isn’t a one-time scan or an annual audit. It’s a continuous lifecycle designed to help organizations stay ahead of risk. Your ASM program can be custom to your organization, and should include these four key stages:

Phase 1. Discover

Step one is to understand all your assets. Inventory all internet-facing and internal assets, including:

Example: A development team spins up a temporary cloud environment that gets indexed by search engines. Discovery ensures it gets flagged, even if IT wasn’t informed. That cloud environment expands the attack surface.

Phase 2. Classify & prioritize

Not all risks are equal. Group and prioritize assets based on business context and risk. Knowing what something is, and how critical it is to operations, helps guide your response. Prioritize assets based on:

Fix what poses the greatest risk first. Consider risk scoring to assist in prioritization and know your organization’s risk tolerance and risk appetite.

Example: An exposed staging environment may be low priority in terms of attack service risk. In contrast, an exposed production database with customer data is not.

Phase 3. Remediate

Now it’s time to take action. Act on exposures, as prioritized, by patching, removing, isolating, or hardening assets. Actions here will depend on the prioritized assets but common remediation can include:

After remediating, always be sure to validate that your actions actually worked — do not assume.

Example: A SOC uses ASM data in its SOAR playbook to automatically quarantine risky assets and assign tickets to relevant teams.

Phase 4. Monitor continuously

Use automation to continuously monitor and track changes continuously and over time. The continuous monitoring is essential because your attack surface changes constantly: new assets get added, apps get misconfigured, people leave the organization. ASM keeps your inventory fresh and your alerts real.

Watch for changes and exposures, such as:

What types of assets are in scope for ASM?

ASM isn’t limited to firewalls and endpoints. That’s why assets in scope for ASM must include:

Challenges to getting ASM right

Even with the right intent, managing attack surfaces can be difficult to implement without the right strategy or tooling. Common roadblocks include:

How Splunk supports attack surface management

Attack surfaces may be expanding, but so are the tools and strategies to manage them. With attacks on organizations happening every day, we can no longer rely on manual processes alone.

Platforms like Splunk help teams automate discovery, correlate data across assets, and respond faster, making attack surface management both manageable and actionable. Splunk brings structure and visibility to ASM by helping teams:

Frequently asked questions (FAQs)

What’s the difference between ASM and vulnerability management?
Attack surface management (ASM) is asset-centric and focuses on discovering all assets and exposures, known or unknown, across your environment. Vulnerability management is software-centric, identifying and remediating flaws (like CVEs) in systems already inventoried. ASM and vulnerability management are complementary: ASM helps you find what needs protection, while vulnerability management helps you fix known issues.
Does ASM only cover external assets?
No. ASM includes both external and internal assets, covering cloud infrastructure, on-premises environments, shadow IT, and even human touchpoints.
How often should ASM be performed?
ASM should be continuous. Because your environment changes daily, continuous monitoring ensures your asset inventory and risk visibility stay current.
What features should you look for in an ASM tool?
Choose tools that automatically discover assets (cloud, web, third-party), continuously monitor exposure changes, risk-score assets by exploitability, integrate with SIEM/SOAR/ticketing systems, scale across hybrid environments, and offer flexible alerting and reporting.
Can ASM support Zero Trust initiatives?
Yes. ASM continuously verifies the existence and status of assets, supporting least-privilege access and helping enforce Zero Trust security principles.
Does ASM replace vulnerability scanning?
No. ASM complements vulnerability scanning by ensuring all assets—known and unknown—are discovered. Vulnerability scanning then focuses on finding software-level issues within those assets.

Video: Learn more about Attack Surface Management (ASM) Explained

Related Articles

What Is Intelligent Automation?
Learn
3 Minute Read

What Is Intelligent Automation?

Intelligent automation is smarter than more traditional forms of IT automation. Take a look at what intelligent automation can do for you today.
What Is Public Key Infrastructure (PKI)?
Learn
3 Minute Read

What Is Public Key Infrastructure (PKI)?

A full introduction to PKI: Public Key Infrastructure (PKI) is the cryptography framework used to protect and authenticate digital communications.
SQL for Data Science: Introduction & Tutorial
Learn
8 Minute Read

SQL for Data Science: Introduction & Tutorial

SQL is among the most powerful tools a data scientist can use. Get the full introduction for using SQL for data science in this complete guide.
Customer Experience (CX) Metrics
Learn
6 Minute Read

Customer Experience (CX) Metrics

Learn everything you need to know about network architecture and follow the best practices to maintain your architecture’s security.
What Are Foundation Models in AI?
Learn
3 Minute Read

What Are Foundation Models in AI?

A Foundation Model is a general class of AI models trained on large data assets at scale. See how these models work & how essential they are to achieving AGI.
What Is Network Architecture?
Learn
4 Minute Read

What Is Network Architecture?

Learn everything you need to know about network architecture and follow the best practices to maintain your architecture’s security.
SWOT vs. PESTEL Analysis: What’s The Difference?
Learn
5 Minute Read

SWOT vs. PESTEL Analysis: What’s The Difference?

Learn about SWOT and PESTEL frameworks for business analysis. Both can support strategic planning, but there are differences to understand. Read on for more.
What Are Vector Databases?
Learn
6 Minute Read

What Are Vector Databases?

Need your AI models to be more efficient? The solution might lie in vector databases. Learn what vector databases are and can do in this complete introduction.
What are Cloud Service Providers (CSPs)?
Learn
5 Minute Read

What are Cloud Service Providers (CSPs)?

Learn everything about cloud service providers and how to choose the right one for your business.