The Importance of Microservices

What are microservices? Microservices are a software approach that creates applications as a loose coupling of specific services or functions, rather than as a single, “monolithic” program.

A microservice architecture increases the speed and reliability with which large, complex applications are delivered. What makes a service a microservice? Microservices are defined not by how they’re coded, but by how they fit into a broader system or solution. Microservices generally have a more narrow scope, focused on doing smaller tasks well.

In this blog post, we'll take a look at the role of microservices architecture, how it differs from monoliths, and its importance in the modern digital enterprise.

The Traditional Monolithic Approach

Most software systems have traditionally been built as a single monolithic application. Components and functionality are tightly coupled, as opposed to the looser coupling of elements in microservices or service-oriented architecture. Disadvantages of sticking with that approach include:

Microservices offer greater flexibility than a traditional monolithic system. There is no single path for developing microservices, but there are general guidelines for managing data within microservice architectures. The complexity of data management that drives a development team to consider microservices can come from many sources including:

But the biggest difference is sheer size — people often find that they have a monolith that's too big to modify, deploy and scale.

The Role of Service-Oriented Architecture (SOA)

SOA is better suited for large and complex business application environments that require integration with many heterogeneous applications. Microservices, on the other hand, are better suited for smaller and well-partitioned, web-based systems, giving much greater control to developers. Separating applications into smaller parts is not a new idea — service-oriented architecture (SOA) preceded microservices.

The goals of SOA include:

Microservices are a part of a larger shift in IT departments toward a DevOps culture, in which development and operations teams work closely together to support an application over its lifecycle. A company should consider implementing microservices if an SOA culture already exists.

A service-oriented architecture is essentially a collection of services that communicate with each other. The communication can involve either simple data passing or it could involve two or more services coordinating some activity.

Service-oriented architecture represents an effective strategy for agile and fast-moving development cycles. A primary advantage of microservices is the ability for developers to deploy a continuous delivery cycle. Before adopting microservices, an organization must first evaluate the technology already in place. It’s not a question of which architecture performs better. Instead, it’s important to evaluate the purpose of the application you are building.

microservices-vs-monolith diagram image

Common Challenges with Microservices

Some of the biggest challenges of a microservices approach are cultural, including the individual work styles of independent teams, and never feeling that you’re “finished.”

Common Advantages of Using Microservices

A primary reason to switch to microservices is to better focus on business priorities due to the increased speed of innovation. The rise of DevOps, similarly focused on speed and outcomes, has also fueled interest in microservices.

Many companies have evolved from a monolith architecture to a microservices structure, including Amazon, Spotify, Uber, Groupon and Karma. Using microservices, developers at Netflix deploy thousands of code sections every day to support more than 139 million subscribers and 10 billion hours of movies and TV series.

Advantages of microservices include faster software development and deployment, which saves money and can give the organization a competitive edge. Microservice architecture is a perfect choice for developers unable to predict the kinds of devices on which the app is going to run. Developers can provide fast and controlled upgrades without slowing or stopping the app. Further advantages include:

How to Monitor Microservices

Monitoring is a vital component of a microservices architecture. While breaking applications into component microservices offers many benefits, it also creates complexity. Microservices need to communicate with one another, and each individually created and updated component must work with other components, with a minimum of latency. So when managing an application composed of microservices, you're managing a network of interrelated components. Effective management of that network is essential to overall reliability.

Monitoring and observability are easier for developers who already have a DevOps/Agile mindset. As with those approaches, microservices rely on automation and collaboration across all facets of the software development lifecycle (SDLC). Config management, CI/CD servers, APM, network monitoring, dashboards, alert automation and incident management are basics for teams running microservices.

Two essential components of microservices monitoring are basic monitoring and rapid application deployment.

These capabilities imply an important organizational shift — close collaboration between developers and operations — seen in DevOps Culture. This collaboration is needed to ensure that provisioning and deployment can be done rapidly. It's also important to ensure you can react quickly when your monitoring indicates a problem.

With distributed systems, different teams can work toward a culture of observability — including better orchestration, microservices load balancing and fault isolation.

Of course, monitoring is the forward-positioned response to maintaining a microservices architecture. When an anomaly is detected, you also need to respond. It's important to have an alerting process and incident response plan that lets you respond promptly and effectively.

The Bottom Line: Microservices Unlock Velocity

Microservices architecture is still relatively new, but it will only gain in popularity over time. Using microservices empowers teams to grow independently as they scale products and apps. No matter how you implement microservices, one of the main objectives should be a faster time to market. That alone makes the switch worth it for many teams.

FAQs about Microservices

What are microservices?
Microservices are an architectural approach to building applications where each core function, or service, is built and deployed independently.
How do microservices differ from monolithic architectures?
In a monolithic architecture, all components are interconnected and interdependent, whereas microservices break down applications into smaller, independent services that can be developed, deployed, and scaled separately.
What are the benefits of using microservices?
Benefits of microservices include improved scalability, easier maintenance, faster deployment, and the ability to use different technologies for different services.
What challenges are associated with microservices?
Challenges include increased complexity in managing multiple services, the need for robust monitoring, and potential difficulties in ensuring security and data consistency.
How do microservices communicate with each other?
Microservices typically communicate over network protocols such as HTTP/REST or messaging queues.

Related Articles

What Is Data Analytics? The 4 Analytics Types You Need To Know
Learn
4 Minute Read

What Is Data Analytics? The 4 Analytics Types You Need To Know

Data analytics is a whole world of information that you can glean meaning from. See the 4 types of data analytics any business practice needs today.
Monitoring vs Observability vs Telemetry: What's The Difference?
Learn
11 Minute Read

Monitoring vs Observability vs Telemetry: What's The Difference?

Don’t be confused, be creative. Observability is a lot more than mere monitoring. In fact, the possibilities are practically endless. Find out more here.
Canonical Data Models (CDMs) Explained
Learn
6 Minute Read

Canonical Data Models (CDMs) Explained

Take control of your organization's data mess. Canonical data models will reduce the work you do to your data. Find out exactly how to get started.
Ransomware Families & RaaS Groups
Learn
4 Minute Read

Ransomware Families & RaaS Groups

Every 19 seconds a ransomware attack launches. Are these standalone attacks? Are they operating within a ransomware family of shared knowledge? Find out here.
Threat Hunting vs. Threat Detecting: What's The Difference?
Learn
7 Minute Read

Threat Hunting vs. Threat Detecting: What's The Difference?

Hunting threats, detecting threats. Sounds the same — but they are not! Get tons of info (+ free resources) for prevention methods that underpin cybersecurity.
The Triple DES Intro: Triple Data Encryption Standard
Learn
3 Minute Read

The Triple DES Intro: Triple Data Encryption Standard

Triple DES is an encryption standard that’s NIST-approved for use through 2030. Let’s see how it works and when you want — and don’t want — to use it.
Elliptic Curve Cryptography: An Introduction
Learn
4 Minute Read

Elliptic Curve Cryptography: An Introduction

Let’s see how elliptic curve cryptography works, in this digestible, less academic look that still thoroughly explains this technical topic.
Splunk OnDemand Services: An Introduction & Example
Learn
3 Minute Read

Splunk OnDemand Services: An Introduction & Example

Get started with Splunk OnDemand Services (ODS), an advisory service that bridges the gap between Technical Support and project-based services delivered by Professional Services.
Honeypots Explained: Hitting Hackers Where It Hurts
Learn
3 Minute Read

Honeypots Explained: Hitting Hackers Where It Hurts

Entice hackers to your system to gather cyberthreat intelligence. Get the latest on honeypot types and interactions and see why it isn’t all so sweet.