What Is Adaptive Thresholding?

Key Takeaways

  • Adaptive thresholding dynamically adjusts alert thresholds based on historical data patterns, allowing for more accurate detection of anomalies in environments with fluctuating data behavior.
  • By learning from trends and normal fluctuations, adaptive thresholding reduces false positives and missed anomalies compared to static thresholds, ensuring alerts remain timely and relevant as baseline behavior changes.

Adaptive thresholding is a term used in computer science and — more specifically — across IT Service Intelligence (ITSI), for analyzing historical data to determine key performance indicators (KPIs) in your IT environment. Among other things, it’s used to govern KPI outliers in an effort to foster more meaningful and trusted performance monitoring alerts.

The thresholding method specifies the acceptable high and low values for the data produced by IT infrastructure, and is a crucial element of performance monitoring. ITSI offers two threshold types: static and adaptive. Static thresholds allow IT teams to use policies to select different static values for KPIs at different times of the day and week. Adaptive thresholding, on the other hand, uses machine learning to dynamically calculate time-dependent thresholds for these KPIs, allowing operations to more closely match alerts to the expected workload on an hour-by-hour basis.

Adaptive thresholding enables service status to be viewed along a gradient of normal to abnormal — rather than a binarization state of either working or broken. A service that reaches a critical threshold may warrant an alert, for example, but a high threshold — though concerning — probably would not. This more discerning approach reduces alert fatigue and helps IT teams direct their energies toward the most critical issues

.In the following sections, we’ll look at how adaptive thresholding works, how it’s used and various adaptive threshold methods, as well as why it should be an important part of your organization’s performance monitoring strategy.

What is ITSI?

Information Technology Service Intelligence (ITSI) refers to a software solution that uses machine learning to help IT managers monitor complex IT environments and manage analytics-driven IT operations.

ITSI tools are used to monitor and analyze network events to predict and prevent service disruptions. To do that, they rely on AI algorithms to identify patterns and trends in network activity that could result in service degradation or downtime if they’re not proactively corrected. By using an alert-based system, ITSI tools enable IT teams to take corrective action to prevent disruptions and outages.

ITSI tools generally employ a four-step process:

4-steps-of-itsi

ITSI tools employ a four-step process that includes collection, analysis, prediction and action.

What are KPIs?

KPIs, or key performance indicators, are benchmarks by which the performance of a network and its components are measured. KPIs differ from metrics in that KPIs define an outcome, whereas metrics are data points that are used together to measure progress toward that outcome. For example, “reliability” is a common KPI that expresses the probability that a service will perform its required functions over a specific period of time. It’s calculated using two essential failure metrics: Mean Time to Repair (MTTR) and Mean Time Between Failures (MTBF).

While there’s no universal standard for what enterprise KPIs should monitor, the following are commonly used to assess the overall status of a service:

In ITSI, a KPI is saved as a search that returns the value of an IT performance metric, such as CPU load percentage, memory usage or response time. Each KPI is associated with a specific service, which allows you to use KPI search result values to monitor service health, check the status of IT components, and troubleshoot trends that might indicate an issue with your IT systems.

KPIs can be used together to determine the overall health and performance of your IT environment, and ultimately help measure progress toward various objectives and goals. Specifically, KPIs can help with:

kpi-use-cases

KPIs can be used to identify and resolve issues, report on performance trends, improve performance and ensure that SLA performance standards are being met.

How does adaptive thresholding work?

Adaptive thresholding works by using machine learning techniques to analyze historical data, sometimes displayed in a histogram, for patterns that help define the normal state of your environment. You configure different threshold values, or intensity values, to determine the current status of any particular KPI to then drive more meaningful alerts. The simplest form of global thresholding is binary thresholding, or thresh_binary, which applies to an either/or outcome. But most thresholding is applied on a grayscale.

To better understand how this process works, you need to familiarize yourself with a few ITSI concepts — like service health scores, KPIs, and dependent services (sometimes called subservices):

These concepts are designed as a hierarchy. Each service in your environment receives a health score that is calculated based on the status of the KPIs and subservices you define for that service, known as an adaptive_thresh_mean_c. Every KPI requires a threshold configuration. ITSI, which continuously monitors KPI statuses and health scores, allows for six different severities — normal, critical, high, medium, low and info/informational. When KPI severity for a service reaches a defined level in tandem with changes in that service’s health score, it indicates a potential problem and triggers an alert.

When configuring thresholds and alerts, it’s best to maintain simple thresholding. Below are a few best practices:

In these cases, you can choose the “info” severity for all KPI results without impacting the service’s health score.

How is adaptive thresholding used?

Adaptive thresholding is used to configure severity level thresholds in ITSI, which determine the current status of any given KPI. When a KPI’s value meets or exceeds its threshold conditions, the KPI status changes — from “high” to “critical,” for example — indicating a possible issue with a service. KPI thresholds are used with other configurations such as service health scores to drive more relevant alerts that help IT teams proactively troubleshoot and resolve performance problems.

Why is adaptive thresholding important?

Adaptive thresholding is important because it helps solve the challenge of monitoring cloud IT environments. Cloud service providers abstract away the hardware underlying their infrastructures, which makes it difficult for clients’ IT teams to identify the root cause of performance problems. Modern performance monitoring tools thus rely on machine learning techniques to collect, correlate, and interpret terabytes of data to gain insights into application performance, availability of services, latency and throughput, and other indicators of cloud environment health.

A central tenet of monitoring cloud environments is to continuously evaluate the health of the applications and services running on them to ensure optimal workflow. Adaptive thresholding is a critical tool in this regard as it enables organizations to understand the current status of their KPIs and proactively respond to status changes that may indicate a problem. This in turn helps them to prevent downtime that could result in dissatisfied customers and lost revenue.

What are the most common algorithms for adaptive thresholding?

Because infrastructure data can vary widely, ITSI supports three types of adaptive thresholding algorithms: standard deviation, quantile and range-based.

How does adaptive thresholding fall under ITSI?

Adaptive thresholding helps IT teams continuously monitor the status of their KPIs to enable more meaningful alerts. It’s an important component of ITSI, which stresses the use of machine learning-driven analytics to monitor and troubleshoot cloud IT environments.

The role of ML in adaptive thresholding

Machine learning is important in adaptive thresholding because of its ability to discover patterns, draw inferences and make predictions. Cloud IT environments produce terabytes of data every day, far more than humans can parse manually. Machine learning algorithms perform these tasks more efficiently and accurately making them an essential tool in all aspects of performance monitoring.

Adaptive thresholding commonly uses a couple of machine learning techniques to discover patterns in data and make predictions based on them: regression and classification.

Regression analysis examines a dependent variable (the action) and several independent variables (outcomes) and assesses the strength of the relationship among them. It’s commonly used to forecast trends, predict the impact of a particular action, or determine whether an action and outcomes are correlated. Regression analysis encompasses several commonly used algorithms including, simple linear regression, logistic regression and ridge regression.

Classification sorts data into categories for more accurate analysis. It uses different mathematical techniques, including decision trees and neural networks.

The Bottom Line: Adaptive thresholding enables more accurate alerts

Cloud environments bring a host of business benefits to the enterprise, but their complexity can result in high noise levels, alert fatigue, and an inability to identify and respond quickly to performance issues. Adaptive thresholding is an essential technique for improving your service monitoring and empowering your IT team to head off issues before they degrade performance.

Video: Learn more about Adaptive Thresholding

Related Articles

What Is SecOps? Security Operations Defined
Learn
7 Minute Read

What Is SecOps? Security Operations Defined

Security Operations, or SecOps, covers practically every aspect of security & IT operations. Get the latest on what SecOps means today, all right here.
What Is Adaptive AI? Definition & Use Cases
Learn
7 Minute Read

What Is Adaptive AI? Definition & Use Cases

Adaptive artificial intelligence (AI) is the next generation of AI systems. It can adjust its code for real-world changes.
An Introduction to Threat Monitoring
Learn
5 Minute Read

An Introduction to Threat Monitoring

Discover threat monitoring, its importance in combating rising cyber risks, top tools, best practices, and how AI enhances real-time protection for your business.
Chief Data Officer: Responsibilities and Skills
Learn
8 Minute Read

Chief Data Officer: Responsibilities and Skills

In this post, we will explore the chief data officer (CDO) role, including their key responsibilities, skills, and qualifications.
Individual Contributors vs Managers: Differences in Roles
Learn
6 Minute Read

Individual Contributors vs Managers: Differences in Roles

Explore the differences between individual contributors and managers, their roles, transitions, and synergies in organizations.
What Is Authorization?
Learn
6 Minute Read

What Is Authorization?

Authorization is the process of deciding what actions, parts of a website, or application a given user can access after they have been authenticated.
Maximum Acceptable Outage (MAO) Explained
Learn
7 Minute Read

Maximum Acceptable Outage (MAO) Explained

Learn how Maximum Acceptable Outage (MAO) helps organizations minimize downtime and ensure business continuity.
SRE vs. DevOps vs. Platform Engineering: Differences Explained
Learn
8 Minute Read

SRE vs. DevOps vs. Platform Engineering: Differences Explained

This article explains SRE vs DevOps vs Platform Engineering, including similarities and differences, and more.
What Is Threat Hunting?
Learn
8 Minute Read

What Is Threat Hunting?

The goal of threat hunting is NOT to find more security incidents — it’s to drive continuous improvement across your entire security program. Learn more here.