
Blueprint
 Cloud MSP

Splunk

Introduction	 4

MSP requirements	 5

Data sovereignty and access control	 5

Scalability and repeatability	 5

Customer onboarding costs	 5

Ongoing administration costs	 5

Complexity	 5

MSP considerations	 6

Single pane of glass for the MSP analysts	 6

Fast onboarding of new platform
engineers/administrators	 6

Splunk Blogs and Splunkbase	 6

Attribution of workload to specific customers	 6

Documentation exclusions	 7

Data collection	 7

Splunk professional services	 7

Architecture overview	 7

Key Splunk technology and features	 7

Recommended third-party technologies	 7

Version control system	 7

Secrets management that can be integrated
with the automation tool	 7

Automated deployment tool (CI/CD)	 7

Recommended architecture	 8

Why separate customers into different
Splunk Cloud Platform environments?	 9

Design pattern	 10

Anatomy of a single customer	 10

Description	 10

Admin Config Services (ACS)	 11

Splunk search head REST
configuration endpoints	 12

Federated search	 13

MSP/Customer benefits	 14

Quantifiable attribution of workload	 14

Simple and efficient searches	 14

Data segregation and access control	 14

Ability to support customers that have different
geographical and regulatory requirements	 14

Introduction of new use cases	 14

A typical analyst’s flow	 15

Configuring the environment	 16

Index configuration	 16

Optional automation	 16

Configure indexes in indexes.conf and
then distribute them as private apps using
Admin Config Services	 16

Configure indexes using the Admin
Config Services endpoint	 16

Data models and data model accelerations	 16

Optional automation	 16

Federated search	 17

Optional automation	 18

Role-based filtering and federated search	 19

Access control	 19

SAML	 19

Local accounts	 19

Optional automation	 20

SAML automation	 20

Local account automation	 20

Knowledge object management	 21

Limiting knowledge object management	 21

Process control	 21

Technical control	 21

Developing knowledge objects	 21

Approach 1	 22

Approach 2	 22

Optional automation	 22

Table of Contents

Splunk Cloud MSP Blueprint 02

Managing a customer with multiple search
heads/search head clusters in an environment	 29

Federated search	 29

Private app management via ACS	 29

Option 1	 29

Option 2	 29

Splunk Enterprise Security	 30

Splunk Enterprise and bring your own license	 30

Hybrid model (Splunk Enterprise and
Splunk Cloud Platform)	 30

MSP feature limitation matrix	 31

Multi-stack architecture vs. single-stack
architecture	 32

Third-party tools for automation	 33

Functional examples	 34

Customer monitoring use case	 34

Customer component	 34

MSP component	 34

Simple alerting use case	 34

Customer component	 34

MSP component	 34

More questions?	 35

Splunkbase apps	 23

Local changes to Splunkbase apps	 23

Private apps	 23

Macros	 24

App permissions	 24

Limiting app access to specific roles	 24

Addendum	 25

Automation recommendations	 25

Automation workflows	 25

Automated testing and validation	 25

Naming conventions	 26

Code validation	 26

AppInspect	 26

Testing	 26

Push of feature branch	 26

Pull request with main branch	 26

Programmatically generated configuration	 27

Example of configuring federated search and
federated datasets using programmatically
generated configuration	 27

Securing your repository	 28

Branch protections	 28

Approvals	 28

Splunk Cloud MSP Blueprint 03

Table of Contents

Introduction
Splunk Cloud Platform is a powerful and flexible tool that supports the
needs of customers with complex configuration requirements.

This document is intended for the Managed Service Provider (MSP) and
customers with similar complex customer requirements that align with the
service that an MSP might supply. The blueprint describes how to architect
the base platform to support their offerings on Splunk Cloud Platform,
enabling the MSP to meet the complex needs of the customers.

This architecture blueprint leverages Splunk Cloud Platform features to
provide a platform for MSPs and their customers that keeps the complex
needs of the customer and MSP as key design considerations. Its objective
is to provide the experience of a unified solution to the MSP user, even
though it will be made up of distinct building blocks.

It is assumed that the audience has a basic understanding of Splunk Cloud
Platform. If you have limited experience with Splunk Cloud Platform, then
there are some great courses from Splunk Education, and we recommend
“Transitioning to Splunk Cloud” as an ideal starting point.

We will also be discussing third-party tools that support the MSP journey,
so a basic understanding of the following will also prove helpful:

•	 Git and the GitFlow and/or GitHub flow

•	 CI/CD and deployment automation

https://www.splunk.com/en_us/training/transitioning-to-splunk-cloud.html
https://nvie.com/posts/a-successful-git-branching-model/
https://docs.github.com/en/get-started/quickstart/github-flow

Data sovereignty and access control

Data sovereignty

Increasingly we are seeing regional restrictions around
some aspects of customer data. This might result in the
need to restrict where a customer’s data is stored or
accessed from.

MSPs that try to provide for many customers within a
single environment often struggle to meet regulatory
requirements for data locality. This means that a more
traditional MSP offering doesn’t necessarily meet the
modern requirements of their customers.

Access control

MSPs are required to keep each customer’s data
segregated using appropriate access controls. This is
an important concern, usually at the top of the list of
customer requirements. The requirement comes under
various names — data hygiene, data segregation, data
separation or data leakage.

Essentially, a customer wants to have confidence that no
unauthorized access of their data can be made by either
the MSP or other customers of the MSP.

Scalability and repeatability

Customer onboarding costs

Repeatable onboarding and offboarding of customers
is critical. A solution should make it as easy to onboard
customer #2 as customer #50. Ideally, it should be
cheaper to onboard the more customers there are.

Ongoing administration costs

The MSP objective is to have a solution that is scalable
and cost effective with the ultimate aim being that the cost
per customer for administration activities should reduce
as more customers are added. The solution should not
become cost prohibitive to the MSP at scale.

Complexity

It is accepted that the size of a platform will increase
as new customers are added, but this should not
fundamentally affect the complexity of the solution. A
solution should have a linear increase in complexity as
more customers are added.

MSP requirements

Splunk Cloud MSP Blueprint 05

This architecture has been
developed with the MSP and
their customers in mind and
is aimed to meet many of the
requirements that the MSP will
be looking for a platform to solve.

Single pane of glass for the MSP analysts

The MSP is likely to be performing detection and
response activities as a primary part of their service
offerings. It is essential in any solution that they can see
the KPIs and alerts for all customers within a single view
to perform part of their workflow.

Fast onboarding of new platform
engineers/administrators

MSP solutions/architectures often become complicated.
This increases the barrier of entry to new team members,
often requiring a new skill set before they are effective
within the team.

An effective MSP solution should enable new colleagues
within a team to be effective earlier to help achieve faster
return on investment.

Splunk Blogs and Splunkbase

Historically many MSPs have had difficulty leveraging
out-of-the-box content available from Splunk Blogs and
Splunkbase, such as:

•	 Splunk Enterprise Security Content Updates
(Splunkbase)

•	 Splunk Security Essentials (Splunkbase)

•	 Splunk Blogs relating to industry security events and
zero-day alerts (surge blogs)

This challenge has been simplified with this approach,
and as a result this content will be easier for MSPs to
leverage without the need for customization.

Attribution of workload to specific customers

MSPs’ customers will have a varied workload. Some will
have large volumes of data, while others might be much
smaller. Different customers might also want different use
cases implemented to meet their specific requirements.

An effective solution should ensure two or more customer
workloads cannot affect each other.

To reduce the complexity of MSP billing, the solution
should be able to easily and robustly attribute workloads
to a customer, so the MSP will ensure an effective
customer billing model.

Splunk Cloud MSP Blueprint 06

MSP considerations

Documentation
exclusions
This document will not cover the following topics.

Data collection

Data collection is something that is covered well in the
Splunk ecosystem, and we recommend starting with the
following resources:

•	 Splunk Validated Architectures

•	 Splunk documentation around getting data in

Splunk professional services

Complex data onboarding requirements might go beyond
the aforementioned documentation, in which case the
Splunk Professional Services team can be engaged via
your account team to support you.

Architecture overview
The architecture blueprint we are recommending
leverages Splunk technologies at their core. It can be
configured using only these technologies successfully;
however, to ensure repeatability and scalability, we will be
including several third-party technologies to support the
MSP through configuration management and automation.

All third-party technologies included have free and
commercial options available depending on the MSP’s
chosen tooling. We will refer to these technologies at a
high level rather than suggesting specific vendors.

Key Splunk technology and features

This architecture will utilize the following Splunk features
and technologies:

•	 Splunk Cloud Platform (Victoria Experience)

•	 Federated search (standard mode)

•	 Admin Config Services (ACS)

•	 Splunk Cloud REST API

Recommended third-party technologies

We recommend leveraging third-party tools to provide the
following features. These features will support automation
of changes to the deployment and will enable a scalable
and robust platform for the MSP.

Version control system

The purpose of a version control system is to allow
collaboration on changes to be made by developers in a
controlled fashion. It will allow the MSP to know what the
current deployed configuration is and understand what
changed, why and when.

Secrets management that can be integrated with the
automation tool

Secrets management helps us with two challenges in this
solution. We do not want to put sensitive information like
passwords in our version control system, and we should
aim for the principle of least privilege, meaning we want
to keep our developers and users away from this sensitive
information if they do not need it to perform their roles.

Automated deployment tool (CI/CD)

A tool that can help you automate both testing and
deployment of configuration means that we can have
confidence in our configuration before it is deployed.
Automating will also improve confidence in the platform
and will allow developers to focus more on developing
content rather than deploying it to the MSP’s platform.

Some examples of the third-party tools we discuss in this
document are listed in the Addendum toward the end of
this document.

Splunk Cloud MSP Blueprint 07

https://www.splunk.com/pdfs/technical-briefs/splunk-validated-architectures.pdf
https://docs.splunk.com/Documentation/SplunkCloud/9.0.2208/Data/WhatSplunkcanmonitor
https://www.splunk.com/en_us/customer-success.html#professional-services
https://docs.splunk.com/Documentation/SplunkCloud/latest/Service/SplunkCloudservice
https://docs.splunk.com/Documentation/SplunkCloud/latest/Search/Aboutfederatedsearch
https://docs.splunk.com/Documentation/SplunkCloud/latest/Config/ACSIntro
https://docs.splunk.com/Documentation/SplunkCloud/latest/RESTREF/RESTprolog

Splunk Cloud MSP Blueprint 08

Recommended architecture

The diagram below is an example of an MSP architecture
at a high level. Each customer has their own Splunk Cloud
Platform environment, which ensures simple segregation
of data, access control and attribution of workload.

The MSP Splunk Cloud Platform environment is
connected to each customer environment using
federated search, which allows for centralized status
monitoring, aggregation of alerts and use case output.
This MSP enviroment might also be used for limited
use cases that require correlation of data across
multiple customers at the same time, for example alert
aggregation, environment monitoring or looking across
all environments for an indicator of compromise (IOC) or
behavior seen in a single customer.

MSPs can then optionally use the Admin Config Service
(ACS) and the appropriate REST endpoints to manage
all of the environments leveraging version control and
third-party automation tools to ensure that multiple stacks
can be managed as a single platform while also providing
the benefits that configuration management tools provide,
such as the ability to track “What changed?,” “When did it
change?,” “Why did it change?,” and “Who changed it?”

This model also ensures customers can have different
requirements, such as retention, data volume and
workload, while ensuring a manageable and scalable
solution for the MSP.

Customer
user(s)

Customer Splunk Cloud

Summary
index Alert Scheduled

search

CIM
DMA Indexes

Federated search

Customer Splunk
Cloud (2)

Customer Splunk
Cloud (...)SAML

SSO

MSP
user(s)

REST

ACS

MSP automation

CI/CD Version
control

Secrets
management

Alert
dashboards

Management
dashboards

Ad hoc
search

MSP Splunk Cloud

Splunk Cloud MSP Blueprint 09

Why separate customers into
different Splunk Cloud Platform
environments?
The world is changing faster than ever. Compliance
regulations are evolving, especially with respect to data
sovereignty and retention. This, coupled with the bespoke
and complex nature of your customers, means a single
Splunk Cloud Platform environment does not give the
MSP service the flexibility it needs to meet the customer’s
needs in a scalable way.

A single Splunk Cloud Platform stack looks simple on the
surface, but access control, data segregation and even
searches create additional complexity that grows with
every customer that is added to the MSP service. This
soon creates a platform that can be brittle and difficult to
effectively manage.

The additional complexity of many customers in a single
environment also translates into a less performant
solution. This is due to the additional dimension of
knowing which customer was involved in each search,
which increases the amount of resources that the search
will require to execute.

In order to meet the data governance requirements
enforced within some regions, like the EU, a single multi-
tenant architecture approach would mean a copy of the
MSP multi-tenant architecture might be required when
entering a region for the first time. For example, these
governance requirements apply when data is not allowed
to leave the borders of a country or region.

Separate Splunk Cloud Platform environments may seem
more complex, but they actually make the environment
simpler and more efficient for both MSPs and their
customers. It allows MSPs to build uniform or unique
environments to meet the customers’ needs. Separate
environments also ensure that access control is simple
because MSPs do not have to handle the complexities
that come with trying to ensure one customer cannot see
another customer’s data, or with having to add complex
and expensive filtering to searches and use cases.

Design pattern
Anatomy of a single customer

Description

Each customer will likely be provided with the same
basic elements to ensure the service being offered by
the MSP is sustainable. If MSPs treat every customer as
completely bespoke, then they cannot achieve the lowest
platform management overheads.

Use cases, where possible, should run within the
customer environment rather than being initiated from the
MSP Splunk Cloud Platform environment. This prevents
unnecessary data transfer between the customer cloud
environment and the MSP cloud environment and
reduces Search Processing Language (SPL) complexity.

The use cases run for the customer will output a
notification/alert that the MSP will consume and act
upon. Summary indexes are an ideal target for these
notifications to be stored. They can be consumed over
federated search from the MSP hub environment for
aggregation and reporting as appropriate.

MSPs can leverage all Splunk features within the
customer environment and can have environments
with or without premium apps like Enterprise Security
(Enterprise Security will be covered specifically later in
this document).

Customer
user(s)

Customer Splunk Cloud

Summary
index Alert Scheduled

search

CIM
DMA Indexes

Federated search

Customer Splunk
Cloud (2)

Customer Splunk
Cloud (...)SAML

SSO

MSP
user(s)

REST

ACS

MSP automation

CI/CD Version
control

Secrets
management

Alert
dashboards

Management
dashboards

Ad hoc
search

MSP Splunk Cloud

Splunk Cloud MSP Blueprint 10

Admin Config Services (ACS)

Each customer’s environment can be managed using
third-party automation, and ACS will be a key part of that.
Admin Config Services is a set of REST endpoints, similar
to the Splunk REST API that MSPs may be familiar with,
that allow for programmatic configuration of Splunk
Cloud Platform.

There is also a command line interface (CLI) version
of Admin Config Services available which some users
may prefer.

The current features of Admin Config Services can be
located in Splunk’s Admin Config Service Manual.

Customer
user(s)

Customer Splunk Cloud

Summary
index Alert Scheduled

search

CIM
DMA Indexes

Federated search

Customer Splunk
Cloud (2)

Customer Splunk
Cloud (...)SAML

SSO

MSP
user(s)

REST

ACS

MSP automation

CI/CD Version
control

Secrets
management

Alert
dashboards

Management
dashboards

Ad hoc
search

MSP Splunk Cloud

Splunk Cloud MSP Blueprint 11

https://docs.splunk.com/Documentation/SplunkCloud/latest/Config/ACSIntro

Splunk search head REST
configuration endpoints

While most configuration will be managed via Admin
Config Services, there might be specific functionality
that automation would configure using available REST
endpoints on the search heads. This might include:

•	 Authentication configuration that might not be
achievable via ACS

•	 Enabling of certain content deployed via ACS (covered
in “Managing a customer with multiple search heads/search
head clusters in an environment” in the Addendum)

•	 Configuration of federated search

Customer
user(s)

Customer Splunk Cloud

Summary
index Alert Scheduled

search

CIM
DMA Indexes

Federated search

Customer Splunk
Cloud (2)

Customer Splunk
Cloud (...)SAML

SSO

MSP
user(s)

REST

ACS

MSP automation

CI/CD Version
control

Secrets
management

Alert
dashboards

Management
dashboards

Ad hoc
search

MSP Splunk Cloud

Splunk Cloud MSP Blueprint 12

Federated search

As part of the day-to-day operations of the MSP, there will
be a requirement to interact with the customer environments
both individually and en masse, so there is also a need
to ensure that searches can run across the environments
selectively when needed. To this end, federated search in
standard mode is the key component.

Standard mode in federated search allows multiple
levels of access control, which will increase customer
confidence around who can access their data. Also, as
analysts specify where to target a search, they end up with
searches that are only distributed to one or more customer
environments from the MSP environment when the search
explicitly needs to be targeted at that customer.

Note: Transparent mode for federated search is not
appropriate for the MSP architecture pattern described
in this document. This is because the MSP Splunk Cloud
environment cannot selectively choose where a search is
executed in this mode and the MSP Splunk Cloud Platform
environment would always have access to all customer
data within the customer Splunk Cloud Platform Stack.

Federated search will use one or more service accounts
that are defined on each customer Splunk Cloud Platform
stack. These service accounts will manage what the MSP
Splunk Cloud Platform stack has the potential to see
within the customer environment. These service accounts
should be local accounts and can be configured on the
relevant customer search head automatically using API
calls for scalable creation and modification at onboarding
and over time.

Splunk Cloud MSP Blueprint 13

Customer
user(s)

Customer Splunk Cloud

Summary
index Alert Scheduled

search

CIM
DMA Indexes

Federated search

Customer Splunk
Cloud (2)

Customer Splunk
Cloud (...)SAML

SSO

MSP
user(s)

REST

ACS

MSP automation

CI/CD Version
control

Secrets
management

Alert
dashboards

Management
dashboards

Ad hoc
search

MSP Splunk Cloud

MSP/Customer benefits

Quantifiable attribution of workload

Separating the majority of the work that is being
performed for a customer makes environment sizing and
workload billing easier. One customer cannot skew the
utilization of another customer nor the MSP environment
as a whole.

Simple and efficient searches

As most workloads are being executed within a single
customer environment, MSPs do not need to add
complexity and dimensions to searches to ensure that
a use case aggregates by customer.

Data segregation and access control

Separating customers ensures simple and robust
control of customer data, so one customer can never
access another customer’s data even in the event of
a misconfiguration.

This customer separation allows for access control
strategies to be simple and scalable.

Ability to support customers that have different
geographical and regulatory requirements

Your customers are likely to have requirements that mean
they might not all be able to operate within the same
Splunk Cloud Platform region. By separating customer
environments MSPs can ensure customers are operating
where they need to without the MSP having to deploy
multiple versions of their offering across many regions.

Introduction of new use cases

Because the customer can have simple access to their
environment in this model, it gives the MSP the opportunity
to start upselling customers with new use cases that extend
beyond the original offering that was sold.

Splunk Cloud MSP Blueprint 14

Splunk Cloud MSP Blueprint 15

A typical analyst’s flow

Once the Splunk Cloud Platform is provisioned and
functioning for the customer, most of the work that will
be performed will be reactive, in response to indicators/
notifications or alerts that have been triggered by the
scheduled searches defined and active for the customer.

The analyst might have a central dashboard on the MSP
Splunk Cloud Platform stack that allows them to see all
alerts that have been triggered across all customers.
While in some scenarios they might perform some
initial triage following a defined workflow from the MSP
environment, it is more likely that they will pivot to the
customer’s environment to continue with the investigation.
They might click on the alert in this central triage
dashboard, which would then pivot the analyst to that

particular customer’s environment, and the integration
could leverage single sign-on (SSO) so that the analyst
gets an experience of a single platform as they will be
authenticated to the customer’s environment seamlessly.

Once the analyst is authenticated with the customer
environment, they would leverage workflows (dashboards
and content) that have been defined for that use case.
These would have been deployed to the customer’s
environment via automation and ACS. They could
also use the search interface to perform parts of the
investigation. Because all of the customer environments
are configured in a similar way, the analyst’s
experience should feel very consistent across
all the customer environments.

Analyst accesses an alert
aggregation dashboard

Start

Analyst authenticates with MSP
Splunk Cloud via SAML

Analyst sees content relating to the
alert they are working on

Analyst investigates and remediates
the alert, and they might be

documenting against the alerts as they

A browser tab opens taking the
analyst to the customer’s Splunk
Cloud environment, and they are

seamlessly authenticated via SAML

Analyst decides which alert they are
functioning on and clicks on the alert

Analyst refreshes the alert aggregation
dashboard and choses the next task

to work through.

Once complete the analyst closes
their browser tab

MPS Splunk Cloud Platform Customer Splunk Cloud Platform

Configuring
the environment
The features that will need to be considered when
building out the environment are listed here. Each feature
is described as if it were being performed manually, and
then a subsection for each describes how the MSP could
automate that functionality.

Index configuration
Splunk recommends using a common naming convention
for indexes across customers. This allows for an MSP
analyst to interact with every customer environment
uniformly, without needing knowledge specific to the
customer environment, which would add complexity. It
also allows for searches to be configured in a uniform way.

At a minimum, an index will be needed for alerts/
notifications to be written to when a scheduled search
outputs results (very similar to how Enterprise Security
(ES) or IT Service Intelligence (ITSI) create “notables”).
This will allow for retention of an audit record of the alerts/
notifications that the customer would be able to view. It
will also be the point of reference for the aggregation and
alerting dashboards on the MSP environment.

Optional automation

There are two ways that indexes could be managed
via automation.

Configure indexes in indexes.conf and then distribute
them as private apps using Admin Config Services

Create Read Update Delete (CRUD) functionality would
be possible using automation.

Configuration would be performed by creating an app in
version control and then pushing it to the relevant customers
as a private app using Admin Config Services. As this is a
private app, it will have to be vetted using AppInspect.

The pipeline would likely push a new version of the private
app when a change occurs within the app.

Configure indexes using the Admin Config
Services endpoint

CRUD functionality would also be possible via this approach.
Configuration would be stored in version control and
then submitted to the Admin Config Services index

management endpoint. The service behind the endpoint
would then perform the appropriate CRUD operations that
have been submitted.

The pipeline could perform the relevant CRUD operations
and can gather the current state of the environment, so
when the pipeline runs it might validate the current state
of the stack and apply any changes necessary so that the
customer and MSP environments meet the current state
defined within the version control system.

This is the recommended approach.

Data models and data model
accelerations
Data models such as the Splunk Common Information Model
are useful for standardizing events so that the interesting
elements have standard naming conventions for a specific
purpose. These can be leveraged with this solution.

Acceleration of data models can be leveraged to speed up
the execution of each detection that is running and to reduce
overall load on the customer environment, subject to the limits
defined in the Splunk Cloud Platform Service Description.

A common set of data models is the Splunk Common
Information Model, which is an app available from
Splunkbase and certified for Splunk Cloud Platform use.

Data model accelerations would be generated within a
customer environment and accessed locally using the
customer Splunk Cloud environment or via federated search
from the MSP Splunk Cloud Platform instance if needed.

Optional automation

The Splunk app for the Common Information Model can
be deployed using the ACS Splunkbase apps endpoint.

Configuring the accelerations and macros as defined in
the app’s documentation would be performed using the
“Local changes to Splunkbase apps” section (later in this
document) or via the REST endpoint.

If the environment has multiple search head groups, which
is common in Splunk Cloud Platform environments with
premium apps installed, then we will want to enable data
model accelerations and report accelerations selectively
using REST to ensure that we do not have multiple versions
of the same acceleration enabled in the environment.

Splunk Cloud MSP Blueprint 16

https://docs.splunk.com/Documentation/SplunkCloud/latest/Service/SplunkCloudservice
https://splunkbase.splunk.com/app/1621
https://splunkbase.splunk.com/app/1621
https://splunkbase.splunk.com/

Federated search
This is the key functionality required for this architecture.
It will need configuring for every customer onboarded to
the solution.

If the customer has Enterprise Security, then a decision
will be made by the MSP as to whether to integrate with
the Enterprise Security search head or the ad hoc
search head.

1.	 Federated search will require a service account to be
created on the customer environment (remote search
head) with the relevant permissions to appropriately
control access within that customer environment.

2.	 When configuring federated search, it is necessary
to configure ingress and egress for each environment
for the Splunk Management port to enable federated
search connectivity as represented in the following
diagram. Ingress and egress can be configured via
the user interface (UI), using Admin Config Services
CLI or via a support ticket.

To keep the number of platform changes to a
minimum Splunk recommends:

•	 Configure ingress rules on the customer
environment (remote search head) to the IP ranges
relevant to the AWS region where your MSP
Splunk Cloud Platform environment is located

•	 Configure egress rules on the MSP Splunk Cloud
Platform environment to the IP ranges relevant
to the regions where the customer Splunk Cloud
Platform environments are hosted

Splunk Cloud Victoria Experience is hosted within
AWS enabling the configuration of rules to allow
connectivity from the IP ranges of the various
AWS regions. More restrictive rules could be put
in place but would need to be monitored regularly
and updated as the Splunk Cloud Platform
infrastructure changes over time to ensure
connectivity is not impacted.

3.	 The connection from the MSP Splunk Cloud Platform
search head can now be configured. First the MSP
should define a federated provider that allows for
connectivity to the customer stack. This should
be configured in standard mode using the service
account created in Step 1.

4.	 Now it is necessary to update the federated indexes
so that the MSP stack can access datasets on the
customer environment. MSPs should ensure they use
naming conventions that easily allow the analysts to
work, for example, <cust_identifier>_<index>.
(As a minimum for initial setup, configure internal
indexes to allow for monitoring and the summary index
created for alert artifacts that was created earlier).

Splunk Cloud MSP Blueprint 17

MSP
Splunk Cloud
Search head

Customer
Splunk Cloud
Search headInternet

Egress rules
(The destination you
are trying to reach)

Ingress rules
(The source that is
trying to reach you)

https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html

Optional automation

Automating the setup of federated search between the
MSP Splunk Cloud Platform instance and the many
customer environments will utilize both Splunk Admin
Config Services and the Splunk REST API. Automation
could perform programmatic creation of the relevant
configuration so it is repeatable and all federated datasets
will be configured to the same naming standard, which will
make usability easier for the MSP admins and analysts.

Note: MSPs will need to ensure that the environments
allow access on the management port from the
automation system via the IP Allow list functionality before
performing this automation.

This automation would be looped through for each
customer and could follow this flow.

Splunk Cloud MSP Blueprint 18

Federated search
configuration task

Create inbound allowed rules on remote
search head using ACS

Create federated provider on federated
search head using REST

Create federated index/dataset on federated
search head using REST

Optional: store password
in secret manager

End

Create outbound allowed rules on federated
search head using ACS

Create user account for federated search on
remote search head using REST

Optional: collect password
from secret manager

Are there any more
federated indexes

to define?

No

Configure customer

Yes

No

Yes

Role-based filtering and
federated search
Role-based filtering is a new feature introduced to provide
an extra layer of control around who can see sensitive
information. It allows MSPs to apply role-based access
to elements of an event so members within a specific role
can see the unobfuscated event, while people not in the
role can only see the obfuscated version of the event.
This feature could be applied to the service account on
the customer’s Splunk Cloud Platform environment that
federated search is using to prevent the MSP environment
seeing certain personally identifiable information (PII)
when they are not directly connected to the environment.

Example
Sample event:

Audit:[timestamp=11-29-2022 09:19:16.986,

user=darrend, action=search, info=granted

REST: /search/jobs/1669713550.68148/timeline]

It may be necessary to prevent the MSP Splunk Cloud
Platform environment from being able to see this
username in the raw event. Settings can be added to the
role associated with the service account being used for
federated search on the customer environment:

authorize.conf:

[role_msp-fs-svc]

fieldFilter-_raw = s/user=[̂]+

user=REDACTED,/g

As a result of this filtering when accessing the event over
federated search from the MSP Splunk Cloud Platform
environment, we see:

Audit:[timestamp=11-29-2022 09:19:16.986,

user=REDACTED, action=search, info=granted

REST: /search/jobs/1669713550.68148/timeline

Documentation on this feature can be found here.

Note: The initial enablement of this feature currently
needs to be performed via a support ticket; once
enabled it can be managed using private apps and
Admin Config Services.

Access control
There are several authentication mechanisms available
within Splunk Cloud Platform; the most common are
Security Assertion Markup Language (SAML) and
local authentication.

The contractual agreement between the customer and
the MSP might vary, and access control might vary
depending upon their agreed roles and responsibilities,
so we will cover this topic discussing both SAML and
local accounts

SAML

SAML offers the greatest flexibility to the MSP and
their customers.

For MSP users it helps to provide SSO which will support
the experience of a single look and feel for the many
Splunk Cloud Platform stacks making up the MSP
solution.

Currently Splunk Cloud Platform only supports a single
SAML identity provider (IdP). This can create challenges
when the customer and the MSP both want to use their
own SAML provider on the same customer search head.
Many existing Splunk MSPs have solved this challenge
using SAML federation, which most SAML providers
support. This means the MSP or the customer could use
their SAML provider and federate the other’s access.

There is also a Splunk Ideas entry for multiple IdP
support that is currently in the “planned” state, which
should mitigate the need for federation between providers
in the future.

Local accounts

If the customer wants to use their SAML provider and it
is not possible to federate the MSP’s accounts via that
provider, then the MSP might chose to use local accounts.
MSP users will lose some of the unified look and feel of
the platform because they will not get access to SSO for
the MSP analyst as they move between the MSP stack
and the subordinate customer stacks.

It is possible to automate CRUD operations of local
accounts across many customer environments,
which would make this easier to manage, as
explained subsequently.

Splunk Cloud MSP Blueprint 19

https://docs.splunk.com/Documentation/SplunkCloud/latest/Security/setfieldfiltering#Setting_role-based_field_filters_with_the_Splunk_platform

https://ideas.splunk.com/ideas/EID-I-866

Optional automation

SAML automation

The automation of the creation and ongoing maintenance
of SAML configuration will use the Access REST
Endpoint within Splunk Cloud Platform. There is currently
a manual step required in the initial creation (or certificate
update), and investigation is underway on removing this
manual step, which will be covered in future releases of
this document.

Automation of SAML configuration also relies on
supporting automation mechanisms being available
from the chosen SAML provider as there are initial
configuration steps that need to be executed on both
Splunk and the SAML provider, such as uploading
the MSP metadata and downloading the relevant
configuration to populate in Splunk via REST.

SAML configuration (with the current exception of the IdP
certificate) could also be deployed using a private app via
REST; however, this would have lower priority under the
Splunk order of precedence and as a result Splunk would
recommend REST for this task so that it is written to
$SPLUNK_HOME/etc/system/local/authentication.

conf, which has the highest priority.

Local account automation

Splunk Cloud Platform supports CRUD operations on
local accounts using the Access REST Endpoint, which
makes automation of user account activities relatively
easy. In the event that SAML cannot be leveraged one
might choose to use local accounts.

Splunk Cloud MSP Blueprint 20

Deploy group mappings to Splunk Cloud Platform
Search Head using access REST endpoint

Start

End

Configure SAML Partner
(This will be performed on the chosen SAML provider)

Test group mappings to Splunk Cloud Platform Search
Head using access REST endpoint

Download service provider metadata from Splunk
Cloud Platform search head using REST

Deploy configuration to
Splunk Cloud Platform

Search Head using
access endpoint in
REST or via private

app to configure
SAML integration

Manual Step Required
Raise a Splunk Support

Case to deploy the SAML
IDP certificate provided

by SAML provider
(only on creation or
certificate change)

Delete user
using REST

access
endpoint

Create user
using REST

access
endpoint

Update user
using REST

access
endpoint

Start

End

No

YesDoes user need
deleting?

Does user need
updating?

Does required
user exist? Check

using REST

Yes

No

No

Yes

SAML automation

Local account
automation

Knowledge object management
When working with multiple environments MSPs are
unlikely to want to manage knowledge objects via the
UI on each stack as they would suffer very quickly
from configuration drift. They might also want different
configurations to be deployed to different environments,
which further complicates the challenges of managing
knowledge objects. For example, one might want
customer and MSP environments to run with a different
set of knowledge objects.

To mitigate this challenge, MSPs will want to place our
configuration into discrete groups of apps and addons.
They would likely want to use standardized naming
conventions so that they know what is in these addons.

A common approach to standardizing naming is used
in Enterprise Security and is described in About the ES
solution architecture. 	

As a result of putting knowledge objects into apps
and addons MSPs are more likely to be working with
configuration files. They will need to work out a process
of determining which apps/addons should be deployed to
each environment.

Creation of apps and addons is well documented and not
covered further in this document, but a useful reference
on this topic can be found here: Lifecycle of a Splunk app
for Splunk Cloud Platform or Splunk Enterprise.

Once we have our apps/addons created, we can install
them to the relevant MSP and customer environments.

Limiting knowledge object management

This model limits the configuration of knowledge objects
using the UI to make the platform scalable and easier to
manage. As a result MSPs do not want most of the user
base to share objects at the app or global level. There are
typically two ways to achieve this, with a process control
or with a technical control.

The easier option is to implement a process control.

Process control

Create a business process that states users should
not change any knowledge objects permissions or edit
existing knowledge objects shared at the app or global
level in place via the UI.

Technical control

Change the permissions of all deployed apps and addons
to remove the write ability for the relevant roles. This will
allow users to create private knowledge objects, but not to
promote them to “app” or “global.”

Developing knowledge objects

MSPs still want users to be empowered to work on and
develop content on the platform. However, they want to
have control over the knowledge objects that are in use.
There are two typical approaches that could be adopted.

Splunk Cloud MSP Blueprint 21

https://dev.splunk.com/enterprise/docs/devtools/enterprisesecurity/abouttheessolution
https://dev.splunk.com/enterprise/docs/devtools/enterprisesecurity/abouttheessolution
https://dev.splunk.com/enterprise/docs/lifecycle/
https://dev.splunk.com/enterprise/docs/lifecycle/

Approach 1

This method relies on a separate environment for
development, which might be a sandbox or temporary
environment running in a development environment or
developer’s laptop and will be running Splunk Enterprise.

This approach is effective for creating and updating
content, but thought may need to be taken on how
adequate testing might be performed. This approach also
minimizes the potential for accidental changes as we will
not be altering knowledge objects directly in production.

As users will likely have access to the underlying
filesystem, it will also make it easier to gather knowledge
objects in preparation for deployment to the MSP and
customer environments.

Thought will need to be taken on how to provide
representative test data to these separate environments,
and in some cases search development might occur
in production environments using the controls already
discussed to ensure representative data for prototyping.

Generally this approach offers a lower skill level for new
MSP admins and as such once created is more robust.

Approach 2

This method allows creation of knowledge objects directly
in the production environments. It allows users to create
knowledge objects and dashboards in their private user
context directly in the environments but limits their ability
to share those objects at the app or global level (as
discussed in the preceding content on controls). MSPs
can then take those changes and add them to their apps/
addons to be deployed to the relevant customers.

Optional automation

Managing knowledge objects across the multiple Splunk
Cloud Platform environments in a robust, scalable and
repeatable way is the perfect use case for automation.

Knowledge objects will be grouped into apps or addons
and will either be deployed from Splunkbase or as a
custom app.

The deployment of these apps or addons is performed
using ACS.

Splunk Cloud MSP Blueprint 22

End

User tests the
knowledge object

functions as expected
in the standalone

environment

Once testing is
complete addon is

deployed to all relevant
MSP or customer

environments

User adds the content
app/addon deployed

to the relevant
environment to test

User adds the content
to the relevant

configuration file in
the app/addon

User gathers the
configuration of the

knowledge object they
have created

User tests the
knowledge object

functions as expected
in the private context

User develops
knowledge in the UI in

the private context

Approach 2
Developing in Splunk

Cloud Platform

User develops
knowledge object
in the app/add-

on in standalone
environment

Approach 1
Standalone

development

User tasked to create
knowledge object

Splunkbase apps

MSPs can automate the CRUD operations of Splunkbase
apps easily using ACS. They simply make REST calls
telling ACS which cloud vetted apps to install, and
they will be installed onto the Splunk Cloud Platform
environment within a couple of minutes (Admin Config
Service Manual).

Local changes to Splunkbase apps

In an on-premise deployment of Splunk Enterprise,
we would historically have solved this challenge using
modifications to the addon that we deploy to the local
folder of the same app or addon. This is typically
performed when tuning a Splunkbase app or addon to
enable or disable specific functionality.

ACS does not currently support local changes being
made to a Splunkbase app in this way. MSPs are still
able to make these changes in a supportable way by
leveraging the Splunk order of precedence of apps (How
app directory names affect precedence).

Changes should be deployed to apps with a similar name
that are more important in the order of precedence. This
way customizations will be applied rather than the original
settings in the Splunkbase app or addon.

The app containing the customizations could then be
deployed to the environment using the ACS private app
management endpoint.

Private apps

Private apps is the term used when talking about any app
that is not downloadable and ready to be used directly
from Splunkbase. These would typically be:

•	 Content developed by or on behalf of the customer

•	 Apps/Addons obtained from a source other than
Splunkbase, such as an app/addon that was supplied
directly by a another vendor

•	 A Splunkbase app/addon that was not cloud vetted
that needed significant customization to be allowed in
Splunk Cloud Platform

•	 An app containing the customized contents of a local
directory as a default directory when a customer has
migrated from on-premises to Splunk Cloud Platform.

These apps/addons should go through a process called
app vetting and can then be installed on Splunk Cloud
Platform via ACS (Vet apps and add-ons for Splunk
Cloud Platform).

When automating AppInspect into your workflows, we
recommend running AppInspect against any private
apps that have changed in that branch before the merge
request that will attempt to deploy the changes is run. This
will ensure that AppInspect issues are caught early and
will minimize any potential issues just before deployment,
even though it is possible that you might still push the apps
through AppInspect again during the deployment.

Splunk Cloud MSP Blueprint 23

End

Submit app to ACS
private apps endpoint

to be installed

Yes

Did it pass
AppInspect? No

Updated version
in app.conf

Submit packaged app to
AppInspect API

New/updated content

Remediate
AppInspect failures

Start

https://docs.splunk.com/Documentation/SplunkCloud/latest/Config/ManageSplunkbaseApps
https://docs.splunk.com/Documentation/SplunkCloud/latest/Config/ManageSplunkbaseApps
https://docs.splunk.com/Documentation/Splunk/latest/Admin/Wheretofindtheconfigurationfiles#How_app_directory_names_affect_precedence
https://docs.splunk.com/Documentation/Splunk/latest/Admin/Wheretofindtheconfigurationfiles#How_app_directory_names_affect_precedence
https://dev.splunk.com/enterprise/docs/releaseapps/cloudvetting/
https://dev.splunk.com/enterprise/docs/releaseapps/cloudvetting/

Macros

In this configuration the goal is for analysts to have a
uniform experience when interacting with the platform.
When accessing datasets across many customers from
the MSP environment, users should not have to type in
every customer environment; equally wildcards should not
be used excessively. MSPs also don’t want to increase
the amount of customer specific knowledge expected of
analysts before they can support the platform.

A great solution to this challenge is macros (Knowledge
Manager Manual).

Administrators can abstract the customer datasets that
they might want to access en masse into macros so that
the analysts and users utilize them in their searches,
rather than having to type complex queries.

As an example, rather than a user having to write a
search similar to:

index=federated:cust1_internal OR

index=federated:cust2_internal OR … |stats count

They could simply run:

c̀ust_internal_indexes̀ |stats count

The macro would ensure the user didn’t have to know
information about the name of every customer, they just
need to know that the macro cust_internal_indexes
provides them access to the _internal index of every
customer in parallel.

Optional automation

These macros can easily be programmatically created/
modified by automation every time you onboard a
new customer.

In the automation MSPs will know which federated
datasets exist and which customers they have. They
can use this information to programmatically build a
new private app that contains the relevant macro
definitions. This app would then be deployed via ACS
and automatically updated as new customers are
added/removed or when new datasets need this level
of abstraction.

App permissions
In Splunk we often just leave app permissions at their
default settings and use the global sharing option to
allow content to be merged across multiple apps.
This works well for most scenarios.

However, there are scenarios which need to use
more granular access control on apps to meet
specific scenarios.

Limiting app access to specific roles

RBAC can not only be applied to indexes and
capabilities in Splunk, it can also be applied to apps.
This might be to limit the access of an MSP specific
dashboard to only colleagues from the MSP, or limit
access to an app specific to web application logs to
the web application team.

Details on configuring more granular permissions in your
apps are covered here: Set permissions using RBAC in
Splunk Cloud Platform or Splunk Enterprise.

Splunk Cloud MSP Blueprint 24

https://docs.splunk.com/Documentation/SplunkCloud/latest/Knowledge/Usesearchmacros
https://docs.splunk.com/Documentation/SplunkCloud/latest/Knowledge/Usesearchmacros
https://dev.splunk.com/enterprise/docs/developapps/manageknowledge/setpermissionsforobjects/
https://dev.splunk.com/enterprise/docs/developapps/manageknowledge/setpermissionsforobjects/

Splunk Cloud MSP Blueprint 25

Addendum
Automation recommendations
Using third-party automation tools will significantly
improve the quality and ease of management. It will
also allow you to identify what changed, why, when and
the user that made the change, which are useful things to
track from a compliance perspective.

We recommend validating the current state of an
environment and only applying necessary changes to
match your configuration in version control. We do not
recommend attempting to apply every configuration
in your version control system every time you perform
a release.

When working with private apps, we recommend only
deploying apps that have new changes in the feature
branch that is being merged and/or installing apps that
are not currently installed in the target environment.

We do not recommend attempting to install every app
on every release as some apps might trigger a restart of
the platform and we want to manage the deployment of
those apps.

Automation workflows

While GitHub flow and GitFlow provide approaches to
managing your configuration, you might also have a
flow within your organization that you would prefer to
work with.

For the remainder of this section we will use GitHub flow
as our workflow, which might look like the diagram below.

Try to keep your automation workflows relatively efficient.
Generally, if the workflow takes longer than 5 minutes
to complete, then it might hinder rather than help your
content developers.

Automated testing and validation

Automation allows you to enforce your defined
standards easily and also to perform syntax checking
proper to testing.

Some of the automation that you develop as an MSP
might validate the syntax and naming standards of the
changes that have been made before they are tested
and eventually deployed, while other parts of your testing
might perform more functional testing.

When developing validation and testing, we would not
recommend “boiling the ocean.” There are some tests
that are sensible to start with, but others might be based
on challenges you have encountered. When you have an
issue in the future a good practice might be to learn from
it and build a test so that it cannot happen again. It is also
sensible to review failures to ensure a test is still valid and
tune it appropriately over time.

Main

Feature

Pull request triggered
to start merging

feature with main

Developer working
on feature

Code committed and
pushed to repository

Feature branch
created

https://docs.github.com/en/get-started/quickstart/github-flow
https://nvie.com/posts/a-successful-git-branching-model/

Main

Feature

Pull request triggered
to start merging

feature with main

Developer working
on feature

Code committed and
pushed to repository

Feature branch
created

•	 Deploy

•	 Approval
•	 Testing

•	 Name standards
•	 Syntax
•	 AppInspect
•	 Testing

Naming conventions

Naming conventions are important at scale. However
often developers don’t follow them quite as strictly as they
should. This can lead to confusion in your user base since
they are relying on those conventions. With automation
we can add checks and fail changes that don’t adhere to
your documented standards.

We recommend enforcing naming conventions early. This
could be performed as early as when the developer pushes
their feature branch before any further testing is performed.

Code validation

One of the useful features about adding automation to
your testing and release processes is that we can check
for syntax errors. This could be as simple as validating
any JSON you are using in your repository is actually
JSON and doesn’t have syntax errors before proceeding.

This is another check that you could perform prior to any
functional tests being performed.

AppInspect

When making changes or creating a new private app, we
can leverage AppInspect to get a view of changes that
might need to be made prior to testing and deployment.
We can identify changes to private apps that have
occurred in our branches and push them through
AppInspect early. Upon failure of AppInspect, we can
parse the output and provide feedback to the developer
on what they need to change to be successful.

Testing
Some kind of testing will probably be part of your process
before you decide to release changes to your MSP stack
and your customers.

There are two points when we are likely to perform
testing. You will need to decide the appropriate point(s) for
the test(s) you wish to perform.

Push of feature branch

This is likely where you will be performing some of the
checks already like initial AppInspect, naming standards and
code validation. This is a useful place for performing isolated
testing like using an instance of Splunk Enterprise (maybe
the docker container) to check for runtime errors or similar.

Pull request with main branch

When we are ready to commence final testing and deployment,
we will create a pull request. This is where we are starting
the process of merging our feature branch into production.

This is also where we can perform automated testing and
approval steps for code review, change management
approval or similar.

Your automated deployment of configuration is likely to
form part of this pull request testing, so we might want to
perform some checks at this point too. Checks that might
be appropriate to perform are:

•	 Check that the customer environments are available
and healthy

•	 Check you are able to authenticate with ACS,
Splunkbase and, in the case of using REST, the search
heads to which you will be connecting

Once our testing has successfully completed and all approvals
have been achieved, we can merge our pull request. At
this point we will be deploying our change to production.

The preceding steps could be represented on our GitHub
flow diagram below.

Splunk Cloud MSP Blueprint 26

Programmatically generated configuration

Some configuration might be the same no matter
the stack you are trying to deploy to and might be
programmatically generated and applied if needed
during the release.

An example that might be appropriate for this is the
configuration of federated search.

Example of configuring federated search and
federated datasets using programmatically
generated configuration

You are likely to define indexes for your customer
environments in your version control. These might be

the same for every customer, or they might be different.
We might even only want to configure access to certain
indexes. For this example we will keep it simple: every
index configured for the customer in version control will
be accessible from the MSP stack over federated search.

Since we will be defining the index names in our
automation, we can use that not only to push the
configuration to the customer environment but also
to iterate through and configure the MSP’s
federated datasets.

In your pipeline you can create tasks to perform the
following steps for each customer:

Splunk Cloud MSP Blueprint 27

End

Start

Select customer to validate

Check federated index configuration for customer
exists on MSP federated search head for index

Obtain customer index names from version control

Select index to work on

More indexes
to check?

Create federated dataset definition
for customer index

Does it exist?

No

No

Select next customer

Select next index

Yes Yes

More customers
to validate?

No

Yes

In an optimal automation scenario this means that when
a developer adds a new index to version control they
should only have to add that to a single place. When
the automation is triggered, it should create all relevant
configuration related to that index:

•	 Create index on each relevant customer via ACS.

•	 Update role permissions to include the index if you are
restricting index access to the federated search
service account.

•	 Create a federated search dataset for each
customer for the new index so it can be used by
the MSP analysts.

Overlaying this to our GitHub flow diagram would
resemble the chart below.

Securing your repository

The repository is our single source of truth to how a
customer is configured. It is almost the most important
intellectual property you have about your MSP offering,
and it needs to be protected appropriately. You need
to ensure that change cannot be introduced without
going through your appropriate processes. There are
technologies and processes that help us.

Branch protections

Branch protections are strongly recommended to prevent
changes being directly made to your main branch.
Without branch protections, an actor might be able to
circumvent your processes and apply changes directly to
the branch that is in production use. Protecting your main
branch should be the minimum objective with this feature.

Approvals

We should have some level of control around approving
changes to your platform, this could be a simple “four-
eyes process,” where when you create the merge request
another member of your team has to review and approve
to make sure it’s appropriate before it is deployed.
Alternatively, it might be more in-depth integrating with
your organization’s change approval processes.

It is common practice that at least two people are involved
in a change, one developing and one approving, to reduce
the risk of rogue or inappropriate change being deployed.

Splunk Cloud MSP Blueprint 28

Main

Feature

Pull request triggered
to start merging

feature with main

Developer working
on feature

Code committed and
pushed to repository

Feature branch
created

Workflow Steps (Example)

1.	 Iterate over indexes and
create index in customer
environments (ACS)

2.	 Iterate over customers
and update role to include
new index (ACS or REST,
depending on how roles
are being managed)

3.	 Iterate over index and
programatically create
federated dataset for the
index on each customer
(REST)

•	 Name standards
•	 Syntax

Managing a customer with multiple
search heads/search head clusters
in an environment
A standard Splunk Cloud Platform environment will be
provisioned with at least one search head or search
head cluster. Some customers may choose to utilize one
of Splunk’s premium products like Enterprise Security
or ITSI.

When a customer has one of these premium solutions,
this will be provisioned on a separate search head or
search head cluster.

In environments with multiple groups or search heads
within a single customer environment, we have some
additional complexity we need to manage.

Federated search

Typically we will interact with either the ad hoc search
head (or search head cluster) or the premium app
equivalent in a customer environment, depending on the
intended use case you are delivering for the customer.
You will need to make this choice when you configure
the environment. You could change this later if the type
of service you are offering has evolved. The search head
you choose to connect to will be defined by the service
that you are offering to your customers.

Private app management via ACS

When you deploy apps to Splunk Cloud Platform using
ACS, you may not choose where they are deployed. This
decision is made for you by the SaaS. This means that
deploying apps that contain enabled saved searches
might cause those saved searches to execute on both the
ad hoc and premium search heads.

To mitigate this, we should handle our saved searches
slightly differently in our automation in this scenario.

Option 1

1.	Use a naming standard for private apps that helps to
identify where their enabled saved searches should be
deployed, for example es_my_private_app.

2.	Create content as normal in this app within
version control.

In the automation, we will embed logic to accommodate
the challenge:

1.	Disable all of the saved searches in savedsearches.conf
(but keep track of what they were).

2.	Package the app.

3.	Pass it through AppInspect.

4.	Deploy the validated app via ACS.

5.	Use REST to selectively enable the saved searches
within that app that need to be enabled on the relevant
SH (or customer).

Option 2

This option is similar to Option 1; however, rather than
using a single savedsearches.conf, we will maintain two
savedsearches.conf, one of which is the default to be
deployed, and a separate savedsearches.conf.es that
contains the Enterprise Security specific state of the
savedsearches.conf.

This option has the advantage that we are not disabling
every saved search in the app when we deploy it.

•	 Create content as normal in this app within
version control. Saved searches in <app>/default/
savedsearches.conf should be disabled if they are only
needed on one of the search head groups, or enabled
if they should run on both. We should create a separate
file called savedsearches.conf.es.

In the automation, we will need logic to accommodate
the challenge:

1.	Package the app.

2.	Pass it through AppInspect.

3.	Deploy the validated app via ACS.

4.	Use REST to selectively enable the saved searches
within that app that need to be enabled on the relevant
SH using the extra conf file we added.

Splunk Cloud MSP Blueprint 29

Splunk Enterprise Security
In this model, we can easily accommodate Splunk
Enterprise Security (ES) within any of the customer
Splunk Cloud Platform environments. You can
interact with each Enterprise Security instance using
federated search. You can aggregate alerts on the
MSP environment that are generated by each customer
environment’s Enterprise Security instance.

We do not currently support Splunk Enterprise Security
on a federated search head, and as such you would not
be able to use it on the MSP search head to investigate
your customer environments.

This will mean that you will be able to aggregate notables
into a dashboard on the MSP environment. Analysts,
however, will need to navigate to the customer’s
Enterprise Security instance to perform investigations.

Splunk Enterprise and bring your
own license
This blueprint has been focused on Splunk Cloud
Platform, but it is transferable to Splunk Enterprise if you
are running an MSP offering in a public cloud instead.

The only changes that need to be made are regarding
Admin Configuration Services (ACS). This is a capability
specific to Splunk Cloud Platform, providing you access
to backend services within the Splunk Cloud Platform
service. You will need to map the functionality that ACS is
providing to the features available in your chosen platform
(REST, file access, cloud service provider APIs, etc.).

Hybrid model (Splunk Enterprise
and Splunk Cloud Platform)
A hybrid model where you have some customers using
Splunk Cloud and others using Splunk Enterprise might
be required. This is completely possible as federated
search supports this.

However, this model will increase the complexity of your
configuration management because the deployment
methods to push configuration will be different depending
on which variant of Splunk the customer is utilizing.

Splunk Cloud MSP Blueprint 30

Customer
Splunk Cloud

Platform

ENTERPRISE
SECURITY

Customer
Splunk Cloud

Platform

ENTERPRISE
SECURITY

Customer
Splunk Cloud

Platform

ENTERPRISE
SECURITY

Federated search

MSP Splunk
Cloud Platform

MSP feature limitation matrix

Splunk Cloud MSP Blueprint 31

Feature

Multiple
authentication
method support

Common requirement

MSPs often want to have
access to the customer’s
Splunk Cloud Platform
instance as well as allowing
the customer access.
Sometimes the two parties
want to use different SAML
IdPs that do not easily
federate with each other.
Splunk currently supports
only a single SAML
provider per Splunk Cloud
Platform environment.

Current functionality

1.	 One of the parties
federates access for the
other. This is common
when both parties are
using the same IdP.

2.	 One party leverages
an alternate method of
user integration such as
local accounts. Local
accounts can be managed
programmatically using
REST to perform
CRUD operations.

REST API Reference Manual

Evolution for the
MSP

Feature changes
requested and marked
as planned for multiple
IdP support.

https://docs.splunk.com/Documentation/SplunkCloud/latest/RESTREF/RESTaccess
https://ideas.splunk.com/ideas/EID-I-866

Multi-stack architecture vs.
single-stack architecture
In this architecture we are promoting using multiple
Splunk Cloud Platform environments to provide a single
look and feel to the platform being delivered. This aims
to meet the needs of the MSP and their customers. Often
there is an expectation of a single stack architecture

serving multiple customers. The following matrix of key
features along with a comparison of challenges created or
solved by the two approaches should hopefully highlight
why we recommend this model.

Splunk Cloud MSP Blueprint 32

Requirement
Data sovereignty

•	 Support for
the increasing
number of data
governance
requirements
in different
countries

Single-stack
A completely new stack would need to
be deployed every time you sell to a
customer with different data sovereignty
requirements. This eventually ends up
with multiple MSP environments and
still a need to bring them together with
a single umbrella instance. That is, in
the end, this architecture resembles the
blueprint anyway.

Multi-stack
The customer stack can be deployed to
whichever Splunk Cloud Platform region
meets the customer’s needs while the MSP
stack can be anywhere.

Data and access
separation

Complex to manage and doesn’t
scale well:

•	 Risk of running into service limits the
more customers are onboarded

•	 Very difficult to ensure all customer
artifacts are segregated

Each customer is in their own stack, so they
can never access another customer’s data.

Search Searches all must have an extra
dimension added to them to filter by
the customer.

•	 This can slow the searches because
it increases search complexity and
can also increase compute usage
significantly.

•	 It increases the required skill level
of the MSP’s developers.

Searches are run within the confines of the
customer’s Splunk Cloud Platform environment.

•	 Searches are simpler and as a result will
use less compute.

•	 A lower skill level is required before MSP
developer can be effective.

•	 Out of box content such as ES content updates
or Splunk Security Essentials will require less
customization before it can be leveraged.

Attribution of
workload

(How much of the
workload should
be billed to each
customer?)

Customers have a high probability of
influencing each other’s workload.

•	 This makes it difficult to work out
how much compute to bill to each
customer beyond the basics of you
ingested x GB.

Each customer’s workload is isolated and run
within their own environment, so it is easy to
calculate how much a customer should be billed.

•	 No customer has the ability to affect or
skew another’s workload.

Third-party tools for automation
You are likely to have a chosen set of tools to automate
the processes that have been talked about in this
documentation. If you do not currently have automation
tools in your organization to meet these needs, then you
can investigate the following options.

Splunk Cloud MSP Blueprint 33

Version
control

GitHub

Secrets
management

GitHub Secrets

Automation
CI/CD

GitHub
Actions

Notes

The Secrets management is basic, but you can perform all
three of the required activities using this too.

You might want to leverage a dedicated method of secrets
management alongside the basic functionality provided by
the tool.

GitLab GitLab Common version control and CI/CD tool, often leverages
external tooling for secrets management

 HashiCorp Vault Dedicated secrets and sensitive data management that
can be integrated with a wide variety of tools

 Jenkins Common CI/CD tool

Azure
Repos

Azure Key Vault Azure
Pipelines

A tool suite available in Azure with many advanced features

Bitbucket Bitbucket
Pipelines

A tool suite available from Atlassian.

Secrets managements plugins are available including
integrations to HashiCorp Vault.

Functional examples

Customer monitoring use case

There will be times when you want to monitor or perform a
specific use case from the MSP stack. We could run this
as a search from the MSP environment where we search
all stacks using a traditional SPL search.

However, we might want to keep as much of the
processing as possible on the customer’s environment
and then only retrieve the results to the MSP environment.

This use case example shows how you could keep as
much of the processing as possible in the customer
environment.

In this example, we have deployed the use case in
two parts: a saved search is deployed to the customer
Splunk Cloud Platform environment and a corresponding
search leverages that on the MSP Splunk Cloud Platform
instance via federated search.

Customer component

savedsearches.conf:

[last_60m_ingest]
dispatch.earliest_time = -60m@m
dispatch.latest_time = -0m@m
search = | tstats p99(PREFIX(average_kbps=))
AS p99 first(host) AS host where index=_
internal sourcetype=splunkd TERM(group=thruput)
TERM(name=index_thruput) TERM(average_kbps=*)
by _time span=1m | rex field=host “[̂ \.]+\.
(?<stack>[̂ \.]+)\.”|fields - host|table _
time,stack,p99

MSP component

Search in dashboard:

| union [
 from federated:cust1_last_60m_ingest
]
 [
 from federated:cust2_last_60m_ingest
]
| xyseries _time,stack,p99

Simple alerting use case

Much of the work you will likely perform for your
customers will be through the use of saved searches
to generate alerts that will be actioned by your internal
resources.

In these scenarios we will ensure the workload is being
executed in the remote environment and recorded

there so that you can show your customers the alerts
being generated. We will then access those alerts over
federated search from your MSP Splunk Cloud Platform
environment where you can aggregate all the customer
alerts to perform further actions or to provide the start of
a workflow for your analysts.

Customer component

The customer environment portion of the search will
output information about the alert to the msp_alerts index
as a summary indexing task.

savedsearches.conf:

[failed_logins_and_a_success]
action.summary_index = 1
action.summary_index._name = msp_alerts
action.summary_index._type = event
action.webhook.enable_allowlist = 1
alert.track = 0
cron_schedule = 14 * * * *
dispatch.earliest_time = -65m@m
dispatch.latest_time = -5m@m
enableSched = 1
search = index=_audit sourcetype=audittrail
user=* action=”login attempt” info=*|
stats first(splunk_server) AS splunk_
server,count(eval(info=”failed”)) AS login_failed
count(eval(info=”succeeded”)) AS login_success
values(sourcetype) AS sourcetype,values(index)
AS index by user | where login_failed>=3 AND
login_success>0 |addinfo| rex field=splunk_
server “^[̂ \.]+\.(?<stack>[̂ \.]+)\.” |rename
info_min_time AS earliest_time,info_max_
time AS latest_time,info_search_time AS
_time,host AS orig_host,sourcetype AS
orig_sourcetype,index AS orig_index | eval
savedsearch_name=”failed_logins_and_a_success”|
table _time,stack,savedsearch_name,earliest_
time,latest_time,orig*

MSP component

The MSP component can aggregate all of the alerts
generated from the customer environments.

Search example:

index IN (federated:cust1_msp_alerts
federated:cust2_msp_alerts federated:cust3_
msp_alerts)| table _time,stack,savedsearch_
name,count

Splunk Cloud MSP Blueprint 34

More questions?
For questions, reach out to Splunk at msp-partner@splunk.com or
+1.866.GET.SPLUNK (1.866.438.7758)

Download Splunk for free or get started with the free cloud trial. Whether
cloud, on-premises or for large or small teams, Splunk has a deployment
model that will fit your needs.

Learn More

mailto:msp-partner%40splunk.com?subject=
https://www.splunk.com/en_us/download.html
https://www.splunk.com/en_us/talk-to-sales.html?expertCode=sales&301=/asksales

Copyright © 2023 Splunk, Inc. All rights reserved.

	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	TOC

	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	Back:
	Back 2:
	Back 3:
	Back 4:
	Back 5:
	Back 33:
	Back 32:
	Back 8:
	Back 9:
	Back 10:
	Back 30:
	Back 11:
	Back 12:
	Back 13:
	Back 14:
	Back 15:
	Back 16:
	Back 17:
	Back 18:
	Back 19:
	Back 20:
	Back 21:
	Back 22:
	Back 23:
	Back 24:
	Back 25:
	Back 26:
	Back 27:
	Back 28:
	Back 29:

