
QUICK REFERENCE GUIDE

This guide describes key concepts and features,
as well as commonly used commands and
functions for Splunk Cloud and Splunk Enterprise.

Concepts
Events

An event is a set of values associated with a timestamp.

It is a single entry of data and can have one or multiple

lines. An event can be a text document, a configuration

file, an entire stack trace, and so on. This is an example of

an event in a web activity log:

173.26.34.223 - - [01/Mar/2021:12:05:27 -0700]

"GET /trade/app?action=logout HTTP/1.1" 200 2953

You can also define transactions to search for and group

together events that are conceptually related but span a

duration of time. Transactions can represent a multistep

business-related activity, such as all events related to a

single customer session on a retail website.

Metrics

A metric data point consists of a timestamp and one or

more measurements. It can also contain dimensions.

A measurement is a metric name and corresponding

numeric value. Dimensions provide additional

information about the measurements. Sample metric

data point:

Timestamp: 08-05-2020 16:26:42.025 -0700

Measurement: metric_name:os.cpu.user=42.12,

metric_name:max.size.kb=345

Dimensions: hq=us-west-1, group=queue, name=azd

Metric data points and events can be searched and

correlated together, but are stored in separate types

of indexes.

Host, Source, and Source Type

A host is the name of the physical or virtual device

where an event originates. It can be used to find all

data originating from a specific device. A source is the

name of the file, directory, data stream, or other input

from which a particular event originates. Sources are

classified into source types, which can be either well

known formats or formats defined by the user. Some

common source types are HTTP web server logs and

Windows event logs.

Events with the same source types can come from

different sources. For example, events from the file

source=/var/log/messages and from a syslog input

port source=UDP:514 often share the source type,

sourcetype=linux_syslog.

Fields

Fields are searchable name and value pairings that

distinguish one event from another. Not all events have

the same fields and field values. Using fields, you can

write tailored searches to retrieve the specific events

that you want. When Splunk software processes events

at index-time and search-time, the software extracts

fields based on configuration file definitions and user-

defined patterns.

Use the Field Extractor tool to automatically generate

and validate field extractions at search-time using

regular expressions or delimiters such as spaces,

commas, or other characters.

Tags

A tag is a knowledge object that enables you to search

for events that contain particular field values. You can

assign one or more tags to any field/value combination,

including event types, hosts, sources, and source types.

Use tags to group related field values together, or to

track abstract field values such as IP addresses or ID

numbers by giving them more descriptive names.

Index-Time and Search-Time

During index-time processing, data is read from a

source on a host and is classified into a source type.

Timestamps are extracted, and the data is parsed into

individual events. Line-breaking rules are applied to

segment the events to display in the search results. Each

event is written to an index on disk, where the event is

later retrieved with a search request.

When a search starts, referred to as search-time,

indexed events are retrieved from disk. Fields are

extracted from the raw text for the event.

2﻿

QUICK REFERENCE GUIDE

Indexes

When data is added, Splunk software parses the data

into individual events, extracts the timestamp, applies

line-breaking rules, and stores the events in an index.

You can create new indexes for different inputs. By

default, data is stored in the “main” index. Events are

retrieved from one or more indexes during a search.

Core Features
Search

Search is the primary way users navigate data in Splunk

software. You can write a search to retrieve events from

an index, use statistical commands to calculate metrics

and generate reports, search for specific conditions

within a rolling time window, identify patterns in your

data, predict future trends, and so on. You transform

the events using the Splunk Search Process Language

(SPL™). Searches can be saved as reports and used to

power dashboards.

Reports

Reports are saved searches. You can run reports on

an ad hoc basis, schedule reports to run on a regular

interval, or set a scheduled report to generate alerts

when the results meet particular conditions. Reports

can be added to dashboards as dashboard panels.

Dashboards

Dashboards are made up of panels that contain modules

such as search boxes, fields, and data visualizations.

Dashboard panels are usually connected to saved

searches. They can display the results of completed

searches, as well as data from real-time searches.

Alerts

Alerts are triggered when search results meet specific

conditions. You can use alerts on historical and real-

time searches. Alerts can be configured to trigger

actions such as sending alert information to designated

email addresses or posting alert information to a

web resource.

Additional Features
Datasets

Splunk allows you to create and manage different

kinds of datasets, including lookups, data models, and

table datasets. Table datasets are focused, curated

collections of event data that you design for a specific

business purpose. You can define and maintain powerful

table datasets with Table Views, a tool that translates

sophisticated search commands into simple UI editor

interactions. It’s easy to use, even if you have minimal

knowledge of Splunk SPL.

Data Model

A data model is a hierarchically-organized collection

of datasets. You can reference entire data models or

specific datasets within data models in searches. In

addition, you can apply data model acceleration to

data models. Accelerated data models offer dramatic

gains in search performance, which is why they are

often used to power dashboard panels and essential

on-demand reports.

Apps

Apps are a collection of configurations, knowledge

objects, and customer designed views and dashboards.

Apps extend the Splunk environment to fit the specific

needs of organizational teams such as Unix or Windows

system administrators, network security specialists,

website managers, business analysts, and so on. A single

Splunk Enterprise or Splunk Cloud installation can run

multiple apps simultaneously.

Distributed Search

A distributed search provides a way to scale your

deployment by separating the search management

and presentation layer from the indexing and search

retrieval layer. You use distribute search to facilitate

horizontal scaling for enhanced performance, to control

access to indexed data, and to manage geographically

dispersed data.

3﻿

QUICK REFERENCE GUIDE

System Components
Forwarders

A Splunk instance that forwards data to another Splunk

instance is referred to as a forwarder.

Indexer

An indexer is the Splunk instance that indexes data. The

indexer transforms the raw data into events and stores

the events into an index. The indexer also searches the

indexed data in response to search requests. The search

peers are indexers that fulfill search requests from the

search head.

Search Head

In a distributed search environment, the search head is

the Splunk instance that directs search requests to a set

of search peers and merges the results back to the user.

If the instance does only search and not indexing, it is

usually referred to as a dedicated search head.

Search Processing Language (SPL)
A Splunk search is a series of commands and arguments.

Commands are chained together with a pipe “|”

character to indicate that the output of one command

feeds into the next command on the right.

search | command1 arguments1 |

command2 arguments2 | ...

At the start of the search pipeline, is an implied search

command to retrieve events from the index. Search

requests are written with keywords, quoted phrases,

Boolean expressions, wildcards, field name/value pairs,

and comparison expressions. The AND operator is

implied between search terms. For example:

sourcetype=access_combined error | top 5 uri

This search retrieves indexed web activity events that

contain the term “error.” For those events, it returns the

top 5 most common URI values.

Search commands are used to filter unwanted events,

extract more information, calculate values, transform,

and statistically analyze the indexed data. Think of the

search results retrieved from the index as a dynamically

created table. Each indexed event is a row. The field

values are columns. Each search command redefines the

shape of that table. For example, search commands that

filter events will remove rows, search commands that

extract fields will add columns.

Time Modifiers

You can specify a time range to retrieve events inline

with your search by using the latest and earliest search

modifiers. The relative times are specified with a string

of characters to indicate the amount of time (integer and

unit) and an optional “snap to” time unit. The syntax is:

[+|-]<integer><unit>@<snap_time_unit>

The search “error earliest=-1d@d latest=-h@h”

retrieves events containing “error” that occurred

yesterday snapping to the beginning of the day (00:00:00)

and through to the most recent hour of today, snapping

on the hour.

The snap to time unit rounds the time down. For

example, if it is 11:59:00 and you snap to hours (@h), the

time used is 11:00:00 not 12:00:00. You can also snap to

specific days of the week using @w0 for Sunday, @w1

for Monday, and so on.

Subsearches

A subsearch runs its own search and returns the

results to the parent command as the argument value.

The subsearch is run first and is contained in square

brackets. For example, the following search uses a

subsearch to find all syslog events from the user that had

the last login error:

sourcetype=syslog [search login error | return 1

user]

Optimizing Searches

The key to fast searching is to limit the data that needs

to be pulled off disk to an absolute minimum. Then

filter that data as early as possible in the search so that

processing is done on the minimum data necessary.

Partition data into separate indexes, if you will rarely

perform searches across multiple types of data. For

example, put web data in one index, and firewall data

in another.

Limit the time range to only what is needed. For example

-1h not -1w, or earliest=-1d.

4﻿

QUICK REFERENCE GUIDE

Search as specifically as you can. For example, fatal_

error not *error*

Use post-processing searches in dashboards.

Use summary indexing, and report and data model

acceleration features.

Machine Learning Capabilities

Splunk’s Machine Learning capabilities are integrated

across our portfolio and embedded in our solutions

through the Splunk Machine Learning Toolkit.

SPL2

Several Splunk products use a new version of SPL, called

SPL2, which makes the search language easier to use,

removes infrequently used commands, and improves

the consistency of the command syntax. See the SPL2

Search Reference.

Common Search Commands

Command Description

chart/timechart Returns results in a tabular output for (time-series) charting.

dedup Removes subsequent results that match a specified criterion.

eval Calculates an expression. See COMMON EVAL FUNCTIONS.

fields Removes fields from search results.

head/tail Returns the first/last N results.

lookup Adds field values from an external source.

rename Renames a field. Use wildcards to specify multiple fields.

rex Specifies regular expression named groups to extract fields.

search Filters results to those that match the search expression.

sort Sorts the search results by the specified fields.

stats Provides statistics, grouped optionally by fields. See COMMON STATS FUNCTIONS.

mstats Similar to stats but used on metrics instead of events.

table Specifies fields to keep in the result set. Retains data in tabular format.

top/rare Displays the most/least common values of a field.

transaction Groups search results into transactions.

where Filters search results using eval expressions. Used to compare two different fields.

Explore our full suite of products, or investigate the table below to find the specific starting point for your journey.

Or dive right in: Download the free trial and see for yourself what the Splunk platform can do for your data strategy.

https://docs.splunk.com/images/3/3f/Splunk-MLTK-QuickRefGuide-2019-web.pdf
https://docs.splunk.com/Documentation/SCS/current/SearchReference/Introduction
https://docs.splunk.com/Documentation/SCS/current/SearchReference/Introduction
https://www.splunk.com/en_us/software.html
https://www.splunk.com/en_us/download.html

5﻿

QUICK REFERENCE GUIDE

Common Eval Functions

The eval command calculates an expression and puts the resulting value into a field (e.g. “...| eval force = mass *
acceleration”). The following table lists some of the functions used with the eval command. You can also use basic
arithmetic operators (+ - * / %), string concatenation (e.g., “...| eval name = last . “,” . first”), and Boolean operations (AND
OR NOT XOR < > <= >= != = == LIKE).

Function Description Examples

abs(X) Returns the absolute value of X. abs(number)

case(X,"Y",...) Takes pairs of arguments X and Y, where

X arguments are Boolean expressions.

When evaluated to TRUE, the arguments

return the corresponding Y argument.

case(error == 404, "Not found", error ==

500,"Internal Server Error", error == 200,

"OK")

ceil(X) Ceiling of a number X. ceil(1.9)

cidrmatch("X",Y)
Identifies IP addresses that belong to a

particular subnet.
cidrmatch("123.132.32.0/25",ip)

coalesce(X,...) Returns the first value that is not null. coalesce(null(), "Returned val", null())

cos(X) Calculates the cosine of X. n=cos(0)

exact(X)
Evaluates an expression X using double

precision floating point arithmetic.
exact(3.14*num)

exp(X) Returns eX. exp(3)

if(X,Y,Z)

If X evaluates to TRUE, the result is the

second argument Y. If X evaluates to

FALSE, the result evaluates to the third

argument Z.

if(error==200, "OK", "Error")

in(field,value-

list)

Returns TRUE if a value in “value-list”

matches a value in “field”. You must use

the “in” function inside the “if” function.

if(in(status, “404”,”500”,”503”),”true”,

”false”)

isbool(X) Returns TRUE if X is Boolean. isbool(field)

isint(X) Returns TRUE if X is an integer. isint(field)

isnull(X) Returns TRUE if X is NULL. isnull(field)

isstr() Returns TRUE if X is a string. isstr(field)

len(X) This function returns the character

length of a string X.

len(field)

like(X,"Y") Returns TRUE if and only if X is like the

SQLite pattern in Y.

like(field, "addr%")

log(X,Y) Returns the log of the first argument

X using the second argument Y as the

base. Y defaults to 10.

log(number,2)

lower(X) Returns the lowercase of X. lower(username)

https://docs.splunk.com/Documentation/SplunkCloud/latest/SearchReference/CommonEvalFunctions%23Supported_functions_and_syntax&sa=D&source=editors&ust=1614893866974000&usg=AFQjCNFr0zsFQ6N3ZU_GmcQag7AYfEKjGQ

6﻿

QUICK REFERENCE GUIDE

Common Eval Functions (cont.)

Function Description Examples

ltrim(X,Y) Returns X with the characters in Y

trimmed from the left side. Y defaults to

spaces and tabs.

ltrim(" ZZZabcZZ ", " Z")

match(X,Y) Returns if X matches the regex pattern Y. match(field, "^\d{1,3}\.\d$")

max(X,...) Returns the maximum. max(delay, mydelay)

md5(X) Returns the MD5 hash of a string value X. md5(field)

min(X,...) Returns the minimum. min(delay, mydelay)

mvcount(X) Returns the number of values of X. mvcount(multifield)

mvfilter(X) Filters a multi-valued field based on the

Boolean expression X.

mvfilter(match(email, "net$"))

mvindex(X,Y,Z) Returns a subset of the multivalued field

X from start position (zero-based) Y to Z

(optional).

mvindex(multifield, 2)

mvjoin(X,Y) Given a multi-valued field X and string

delimiter Y, and joins the individual values

of X using Y.

mvjoin(address, ";")

now() Returns the current time, represented in

Unix time.

now()

null() This function takes no arguments and

returns NULL.

null()

nullif(X,Y) Given two arguments, fields X and Y,

and returns the X if the arguments are

different. Otherwise returns NULL.

nullif(fieldA, fieldB)

random() Returns a pseudo-random number

ranging from 0 to 2147483647.

random()

relative_time(X,Y) Given epochtime time X and relative time

specifier Y, returns the epochtime value

of Y applied to X.

relative_time(now(),"-1d@d")

replace(X,Y,Z) Returns a string formed by substituting

string Z for every occurrence of regex

string Y in string X.

Returns date with the month and day numbers

switched, so if the input was 4/30/2022 the

return value would be 30/4/2022: replace(date,

"^(\d{1,2})/(\d{1,2})/", "\2/\1/")

round(X,Y) Returns X rounded to the amount of

decimal places specified by Y. The

default is to round to an integer.

round(3.5)

rtrim(X,Y) Returns X with the characters in Y

trimmed from the right side. If Y is not

specified, spaces and tabs are trimmed.

rtrim(" ZZZZabcZZ ", " Z")

https://docs.splunk.com/Documentation/SplunkCloud/latest/SearchReference/CommonEvalFunctions%23Supported_functions_and_syntax&sa=D&source=editors&ust=1614893866974000&usg=AFQjCNFr0zsFQ6N3ZU_GmcQag7AYfEKjGQ

7﻿

QUICK REFERENCE GUIDE

Common Eval Functions (cont.)

Function Description Examples

split(X,"Y") Returns X as a multi-valued field, split by

delimiter Y.

split(address, ";")

sqrt(X) Returns the square root of X. sqrt(9)

strftime(X,Y) Returns epochtime value X rendered

using the format specified by Y.

strftime(_time, "%H:%M")

strptime(X,Y) Given a time represented by a string X,

returns value parsed from format Y.

strptime(timeStr, "%H:%M")

substr(X,Y,Z) Returns a substring field X from start

position (1-based) Y for Z (optional)

characters.

substr("string", 1, 3)

time() Returns the wall-clock time with

microsecond resolution.

time()

tonumber(X,Y) Converts input string X to a number,

where Y (optional, defaults to 10) defines

the base of the number to convert to.

tonumber("0A4",16)

tostring(X,Y) Returns a field value of X as a string. If

the value of X is a number, it reformats

it as a string. If X is a Boolean value,

reformats to “True” or “False.” If X is

a number, the second argument Y is

optional and can either be “hex” (convert

X to hexadecimal), “commas” (formats

X with commas and 2 decimal places),

or “duration” (converts seconds X to

readable time format HH:MM:SS).

This example returns: foo=615 and

foo2=00:10:15:

... | eval foo=615 | eval foo2 = tostring(foo,

"duration")

typeof(X) Returns a string representation of the

field type.

... | eval n=typeof(12) + typeof("string") +

typeof(1==2) + typeof(badfield)

urldecode(X) Returns the URL X decoded. urldecode("http%3A%2F%2Fwww.splunk.

com%2Fdownload%3Fr%3Dheader")

validate|(X,Y,...) Given pairs of arguments, Boolean

expressions X and strings Y, returns

the string Y corresponding to the first

expression X that evaluates to False and

defaults to NULL if all are True.

validate(isint(port), "ERROR: Port is not an

integer", port >= 1 AND port <= 65535, "ERROR:

Port is out of range")

https://docs.splunk.com/Documentation/SplunkCloud/latest/SearchReference/CommonEvalFunctions%23Supported_functions_and_syntax&sa=D&source=editors&ust=1614893866974000&usg=AFQjCNFr0zsFQ6N3ZU_GmcQag7AYfEKjGQ

8﻿

QUICK REFERENCE GUIDE

Common Stats Functions

Common statistical functions used with the chart, stats, and timechart commands. Field names can be wildcarded, so

avg(*delay) might calculate the average of the delay and xdelay fields.

avg(X) Returns the average of the values of field X.

count(X)
Returns the number of occurrences of the field X. To indicate a specific field value to match, format X

as eval(field="value").

dc(X) Returns the count of distinct values of the field X.

earliest(X) Returns the chronologically earliest seen value of X.

latest(X) Returns the chronologically latest seen value of X.

max(X)
Returns the maximum value of the field X. If the values of X are non-numeric, the max is found from

alphabetical ordering.

median(X) Returns the middle-most value of the field X.

min(X)
Returns the minimum value of the field X. If the values of X are non-numeric, the min is found from

alphabetical ordering.

mode(X) Returns the most frequent value of the field X.

perc<X>(Y)
Returns the X-th percentile value of the field Y. For example, perc5(total) returns the 5th percentile

value of a field "total".

range(X) Returns the difference between the max and min values of the field X.

stdev(X) Returns the sample standard deviation of the field X.

stdevp(X) Returns the population standard deviation of the field X.

sum(X) Returns the sum of the values of the field X.

sumsq(X) Returns the sum of the squares of the values of the field X.

values(X)
Returns the list of all distinct values of the field X as a multi-value entry. The order of the values

is alphabetical.

var(X) Returns the sample variance of the field X.

https://docs.splunk.com/Documentation/SplunkCloud/latest/SearchReference/CommonStatsFunctions#Supported_functions_and_syntax

9﻿

QUICK REFERENCE GUIDE

Group Results

Cluster results together, sort by their “cluster_count”

values, and then return the 20 largest clusters (in

data size).

... | cluster t=0.9 showcount=true | sort limit=20

-cluster_count

Group results that have the same “host” and “cookie,”

occur within 30 seconds of each other, and do not have

a pause greater than 5 seconds between each event into

a transaction.

... | transaction host cookie maxspan=30s

maxpause=5s

Group results with the same IP address (clientip) and

where the first result contains “signon,” and the last result

contains “purchase.”

... | transaction clientip startswith="signon"

endswith="purchase"

Order Results

Return the first 20 results. ... | head 20

Reverse the order of a result set. ... | reverse

Sort results by “ip” value (in ascending order) and then by

“url” value (in descending order).
... | sort ip, -url

Return the last 20 results in reverse order. ... | tail 20

Filter Results

Returns X rounded to the amount of decimal places

specified by Y. The default is to round to an integer.

round(3.5)

Returns X with the characters in Y trimmed from the right

side. If Y is not specified, spaces and tabs are trimmed.

rtrim(" ZZZZabcZZ ", " Z")

Returns X as a multi-valued field, split by delimiter Y. split(address, ";")

Given pairs of arguments, Boolean expressions X and

strings Y, returns the string Y corresponding to the first

expression X that evaluates to False and defaults to NULL

if all are True.

validate(isint(port), "ERROR: Port is not an

integer",

port >= 1 AND port <= 65535, "ERROR: Port is out

of range")

Search Examples

10﻿

QUICK REFERENCE GUIDE

Advanced Reporting

Compute the overall average duration and add ‘avgdur’ as

a new field to each event where the ‘duration’ field exists.
... | eventstats avg(duration) as avgdur

Find the cumulative sum of bytes.
... | streamstats sum(bytes) as bytes_total |

timechart max(bytes_total)

Find anomalies in the field ‘Close_Price’ during the last

10 years.

sourcetype=nasdaq earliest=-10y | anomalydetection

Close_Price

Create a chart showing the count of events with a

predicted value and range added to each event in the

time-series.

... | timechart count | predict count

Computes a five event simple moving average for field

‘count’ and write to new field ‘smoothed_count.’

"... | timechart count | trendline sma5(count) as

smoothed_count"

Search Examples (cont.)

Reporting

Return the average and count using a 30 second

span of all metrics ending in cpu.percent split by each

metric name.

| mstats avg(_value), count(_value) WHERE metric_

name="*.cpu.percent" by metric_name span=30s

Return max(delay) for each value of foo split by the value

of bar.

... | chart max(delay) over foo by bar

Return max(delay) for each value of foo. ... | chart max(delay) over foo

Count the events by “host.” ... | stats count by host

Create a table showing the count of events and a small

line chart.

... | stats sparkline count by host

Create a timechart of the count of from “web” sources

by “host.”
... | timechart count by host

Calculate the average value of “CPU” each minute for

each “host.”
... | timechart span=1m avg(CPU) by host

Return the average for each hour, of any unique field that

ends with the string “lay” (e.g., delay, xdelay, relay, etc).
... | stats avg(*lay) by date_hour

Return the 20 most common values of the “url” field. ... | top limit=20 url

Return the least common values of the “url” field. ... | rare url

11﻿

QUICK REFERENCE GUIDE

Search Examples (cont.)

Lookup Tables (Splunk Enterprise only)

For each event, use the lookup table usertogroup to locate

the matching “user” value from the event. Output the

group field value to the event.

... | lookup usertogroup user output group

Read in the usertogroup lookup table that is defined in the

transforms.conf file.

... | inputlookup usertogroup

Write the search results to the lookup file “users.csv.” ... | outputlookup users.csv

Modify Fields

Rename the “_ip” field as “IPAddress.” ... | rename _ip as IPAddress

Metrics

List all of the metric names in the “_metrics” metric index. | mcatalog values(metric_name) WHERE index=_metrics

See examples of the metric data points stored in the

“_metrics” metric index.

| mpreview index=_metrics target_per_timeseries=5

Return the average value of a metric in the “_metrics”

metric index. Bucket the results into 30 second

time spans.

| mstats avg(aws.ec2.CPUUtilization) WHERE index=_

metrics span=30s

Add Fields

Set velocity to distance / time. ... | eval velocity=distance/time

Extract “from” and “to” fields using regular expressions.

If a raw event contains “From: Susan To: David,” then

from=Susan and to=David.

... | rex field=_raw "From: (?<from>.*) To:

(?<to>.*)"

Save the running total of “count” in a field called

“total_count.”
... | accum count as total_count

For each event where ‘count’ exists, compute the

difference between count and its previous value and

store the result in ‘countdiff.’

... | delta count as countdiff

Filter Fields

Keep only the “host” and “ip” fields, and display them in

that order.
... | fields + host, ip

Remove the “host” and “ip” fields from the results. ... | fields - host, ip

12﻿

QUICK REFERENCE GUIDE

Search Examples (cont.)

Multi-Valued Fields

Combine the multiple values of the recipients field into

a single value.

... | nomv recipients

Separate the values of the “recipients” field into

multiple field values, displaying the top recipients.

... | makemv delim="," recipients | top recipients

Create new results for each value of the multivalue

field “recipients.”

... | mvexpand recipients

Find the number of recipient values. ... | eval to_count = mvcount(recipients)

Find the first email address in the recipient field. ... | eval recipient_first = mvindex(recipient,0)

Find all recipient values that end in .net or .org. ... | eval netorg_recipients = mvfilter

match(recipient,"\.net$") OR match(recipient,"\.org$"))

Find the index of the first recipient value match

“\.org$”

... | eval orgindex = mvfind(recipient, "\.org$")

Regular Expressions (Regexes)

Regular Expressions are useful in multiple areas: search commands regex and rex; eval functions match() and

replace(); and in field extraction.

Regex Note Example Explanation

\s white space \d\s\d digit space digit

\S not white space \d\S\d digit non-whitespace digit

\d digit \d\d\d-\d\d-\d\d\d\d SSN

\D not digit \D\D\D three non-digits

\w word character (letter, number, or _) \w\w\w three word chars

\W not a word character \W\W\W three non-word chars

[...] any included character [a-z0-9#] any char that is a thru z, 0 thru

9, or #

[^...] no included character [^xyz] any char but x, y, or z

* zero or more \w* zero or more words chars

+ one or more \d+ integer

? zero or one \d\d\d-?\d\d-?\d\d\d\d SSN with dashes being optional

| or \w|\d word or digit character

(?P<var>...) named extraction (?P<ssn>\d\d\d-\d\d-

\d\d\d\d)

pull out a SSN and assign to

‘ssn’ field

(?: ...) logical or atomic grouping (?:[a-zA-Z]|\d) alphabetic character OR a digit

^ start of line ^\d+ line begins with at least one digit

$ end of line \d+$ line ends with at least one digit

{...} number of repetitions \d{3,5} between 3-5 digits

\ escape \[escape the [character

24_CMP_guide_general-quick-reference-guide_v2

www.splunk.comLearn more: docs.splunk.com

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered trademarks of Splunk LLC. in the United States and other countries.
All other brand names, product names or trademarks belong to their respective owners. © 2024 Splunk LLC. All rights reserved.

QUICK REFERENCE GUIDE

Search Examples (cont.)

Common Date and Time Formatting

Use these values for eval functions strftime() and strptime(), and for timestamping event data.

Time

%H 24 hour (leading zeros) (00 to 23)

%I 12 hour (leading zeros) (01 to 12)

%M Minute (00 to 59)

%S Second (00 to 61)

%N subseconds with width (%3N = millisecs, %6N = microsecs, %9N =

nanosecs)

%p AM or PM

%Z Time zone (EST)

%z Time zone offset from UTC, in hour and minute: +hhmm or -hhmm.

(-0500 for EST)

%s Seconds since 1/1/1970 (1308677092)

Days

%d Day of month (leading zeros) (01 to 31)

%j Day of year (001 to 366)

%w Weekday (0 to 6)

%a Abbreviated weekday (Sun)

%A Weekday (Sunday)

Months

%b Abbreviated month name (Jan)

%B Month name (January)

%m Month number (01 to 12)

Years
%y Year without century (00 to 99)

%Y Year (2022)

Examples

%Y-%m-%d 2022-12-31

%y-%m-%d 22-12-31

%b %d, %Y Jan 24, 2022

%B %d, %Y January 24, 2022

q|%d %b '%y = %Y-%m-%d| q|25 Feb '22 = 2022-02-25|

https://www.splunk.com
http://docs.splunk.com

