
Immutable Rules for

Observability



12 Immutable Rules for Observability   |   Splunk     2

teams understand and explain unexpected behavior, so they 

can effectively and proactively manage the performance of 

distributed microservices running on ephemeral infrastructure. 

The right observability strategy and solution translates into 

more reliability, better customer experience and higher team 

productivity. 

Here, we provide 12 immutable rules for observability for 

ongoing success no matter the complexity of your environment. 

The more observable a system is, the quicker we can 

understand why it’s acting up and fix it — which is critical when 

meeting service-level indicators (SLIs) and objectives (SLOs) 

and, ultimately, accelerating business results. 

Speed defines success in today’s digital economy. With customers 

expecting flawless digital experiences and competition hovering 

just a click away, companies turn to cloud-native technologies 

like microservices, containers and Kubernetes to accelerate 

innovation, build applications faster and improve performance. 

However, moving to cloud-native technologies and distributed 

architectures introduces new challenges around speed, scale 

and complexity of data — challenges that traditional monitoring 

solutions simply weren’t designed to handle. 

This is where observability comes in. 

Organizations must deliver high quality code and differentiated 

user experiences — fast. Observability lets DevOps and SRE 

Introduction



12 Immutable Rules for Observability   |   Splunk     3

However, the mere availability of data doesn’t deliver an 

observability solution. As observability becomes an integral part 

of the DevOps toolchain, it’s important to keep in mind some 

immutable rules when considering, adopting and improving your 

observability.

Observability is a measure of how well we can infer or answer any 

question about the state of our systems (infrastructure, services, 

etc.) using their telemetry data (metrics, traces and logs). 

Observable systems empower DevOps teams to troubleshoot any 

issue that may occur in their systems, including unknown failures 

and failures with root causes buried deep in a microservices maze. 

Beyond troubleshooting, observability gives teams a window into 

their systems and the opportunity to proactively improve code 

releases and system architecture and adapt to change faster. 

First things first, a quick 
observability definition: 



Observability starts with data 
How do you really know what your services are doing,  
even during development? It all starts with the data. 



12 Immutable Rules for Observability   |   Splunk     5

An observability solution uses 
all your data to avoid blind spots

The only way to troubleshoot a needle-in-a-haystack unknown 

failure condition and optimize an application’s behavior is to 

instrument and collect all the data about your environment at full 

fidelity and without sampling. It’s the only way to guarantee no 

visibility gaps. You have the data you need, when you need it.

Service-oriented distributed architectures create more complex 

cross-service boundary interactions, dependencies and error 

propagation that result in highly unpredictable systems with a 

long tail of infrequent but severe issues. Traditional observability 

solutions can fall short for monitoring microservices-based 

applications because they use head-based probabilistic sampling, 

which randomly samples traces and often misses the ones that you 

care about (unique transactions, anomalies, outliers, etc.). 

When assessing observability solutions, look for those that do not 

sample and also retain all your traces — you can decide which 

traces you want to keep — as well as populate dashboards, service 

maps and trace navigations with meaningful information that will 

actually help you monitor and troubleshoot your application.



12 Immutable Rules for Observability   |   Splunk     6

Operates at speed and resolution 
of your new software-defined  
(or cloud) infrastructure

Different use cases with varying degrees of criticality require 

different resolutions. The resolution at which you collect data from 

your monolithic application will most likely not be sufficient as you 

start to collect data from more dynamic microservices running 

on ephemeral containers and serverless functions. For instance, 

if you’re measuring the performance of a mature monolithic 

application running on over-provisioned virtual machines (VMs) 

with a relatively consistent number of users, it may be sufficient to 

have relatively coarse visibility (minute-level resolution) into your 

infrastructure. On the other hand, if you have microservices that are 

running on short-lived, Kubernetes-orchestrated containers that 

spin up and down automatically in minutes, or serverless functions 

that instantiate for only seconds, you’ll need much finer granularity 

(one-second resolution) to effectively monitor the performance of 

your application and infrastructure. 

As you begin to adopt microservices, it’s a good idea to err on 

having higher resolution rather than lower, since the process of 

re-architecting an application or building a net new application 

natively in the cloud can often involve trial and error. 

In other words, you need observability that operates in the same 

time scale as your software-defined, ephemeral infrastructure. 



12 Immutable Rules for Observability   |   Splunk     7

Leverages open, flexible 
instrumentation and makes it 
easy for developers to use

Plan on using open, standards-based data collection from day 

one. By selecting a standardized data format for trace, metric and 

log data and committing to open data ingest methods, it’s easy 

to instrument your code and start capturing observability data, 

freeing up developer time. 

Heavy and proprietary agents are difficult to maintain, degrade 

service performance and are painful to replace, which all result 

in being locked into a specific observability solution that may 

not meet your expanding needs or may become increasingly 

expensive over time. Choosing to rely on common languages and 

frameworks — and leveraging OpenTelemetry, the second most 

active Cloud Native Computing Foundation project — will give you 

the most flexibility in not only how you collect data, but also what 

cloud solutions you use. Most importantly, using OpenTelemetry 

sets you up for success when the time comes to scale and expand 

monitoring and troubleshooting for ever-increasing distributed 

microservices.

Open instrumentation also makes it easier to integrate with 

everything in your existing toolchain for code-to-cloud visibility. 

Observability provides visibility into your DevOps practices and 

toolchain visibility. That visibility is key to sustaining application 

velocity and supporting new tools and processes. While there is 

no one-size-fits-all cloud solution, language, incident response 

product or set of DevOps tools, your observability solution should 

be able to easily integrate with and provide insights into any tools 

that you’re using or may use in the future. 



12 Immutable Rules for Observability   |   Splunk     8

Enables a seamless workflow across 
monitoring, troubleshooting and resolution 
with correlation, and data links between 
metrics, traces and logs

Organizations manage multiple point tools. It’s not 

uncommon to find application owners flagging a 

performance degradation with a point APM tool — 

then contacting a different IT operations team that 

has a separate view of servers and hosts with a point 

infrastructure monitoring tool to try to understand 

whether infrastructure problems are impacting 

critical workloads and business performance. 

This approach isn’t sustainable when trying to 

resolve issues quickly. You should be able to 

easily understand interdependencies and any upstream or 

downstream effect of a particular issue in one system, and have 

a cohesive workflow no matter where exploration starts. 

Your observability solution should have all capabilities fully 

integrated, providing you with relevant contextual information 

throughout your troubleshooting workflow, regardless of your 



12 Immutable Rules for Observability   |   Splunk     9

Fig: triggered RED metrics

title (frontend engineer, SRE, DevOps engineer). Go anywhere the 

data takes you without running into dead ends. For example, it 

should be easy to jump from an alert to relevant trace details and 

carry that information to correlate application degradation with 

underlying infrastructure or frontend problems.

Many teams create and deliver modern applications, making issue 

resolution challenging and siloed. Observability helps reduce 

unnecessary discovery steps and troubleshooting dead ends 

by seamlessly passing information, allowing for a continuous 

investigative flow.

Don’t make teams repeat forensic steps. Why context and unified metrics,  
traces and logs are  important in a troubleshooting workflow:

An alert on one service (metric)   •••••••••••••••••••••>	 SRE, operations

Leads to a timeout error (tracing)  • ••••••••••••••••••>	 DevOps engineer, software engineer

Leads to an infrastructure problem (metric)••••••• >	 DevOps engineer, SRE

Leads to a configuration issue (metric) • ••••••••••••>	 DevOps engineer, operations

Leads to a memory leak in an app (logs)  •••••••••••>	 Developer, software engineer



Observability gets us to 
answers fast
With modern architectures comes a surge of data that 
impacts your understanding of your systems. But data alone is 
not meaningful; you need to be able to aggregate it, analyze it 
and respond to it as needed.



12 Immutable Rules for Observability   |   Splunk     11

Makes it easy to use, visualize and 
explore data out of the box

Intuitive visualizations that require no configuration like dashboards, 

charts and heat maps make it easy to understand the enormous 

amounts of data your systems produce at a glance, and let you 

interact with key metrics in real time. Make sure your observability 

solution aggregates all data and automatically displays metrics 

dashboards, service maps and container architectures out of the 

box and allows for dynamic dimension-based filtering, grouping and 

aggregation. Your solution should also allow custom dashboards 

that can help keep an eye on particular services of interest.

As mentioned, connected context is key. Imagine getting an alert 

from your observability solution that the 99th percentile latency of 

your service has gone up. You follow a link to the service dashboard 

right from the alert modal. The service dashboard shows all the 

components of the service, and the charts show that something’s 

going wrong with the data store. Follow the link to the dashboard 

about the data store, and sure enough one of the instances started 

spiking latency about 15 minutes ago. You now know exactly 

where and when the problem started. Armed with the what, where 

and when, now you can follow a link into the logs to discover the why, 

perhaps by looking at full stack traces written to logs. 

Your observability tool should make it this easy — one alert, two 

dashboards and three clicks to narrow down the source of the problem.



12 Immutable Rules for Observability   |   Splunk     12

Leverages in-stream AI for faster 
and more accurate alerting, directed 
troubleshooting and rapid insights

Cloud-native environments produce too much data to make sense 

of manually. To quickly process all this data, you need real-time 

analytics to surface relevant patterns and proactively deliver 

actionable insights. Basic alert triggers based on static thresholds 

and heartbeat checks are often inaccurate and result in a lot of 

noise. They typically cause floods of alerts that frustrate on-call 

engineers and add to the problem rather than helping to solve it. 

Instead of continuing to rely on these ineffective alert conditions, 

consider more dynamic thresholds based on advanced statistical 

models and AI, as well as more complex, multi-condition rules. Look 

for solutions that are effective at baselining historical performance, 

performing sophisticated comparisons and detecting outliers 

and anomalies in real time. They should also be able to tune and 

customize your alert rules to your specific application environment.



12 Immutable Rules for Observability   |   Splunk     13

Gives fast feedback about (code) 
changes, even in production

Observability is not just for operations and should start during 

development. 

Shifting left — which means starting DevOps processes like testing 

earlier in the pipeline — has become a popular strategy for teams 

working to find and fix issues sooner. 

Shifting right — which involves extending pre-deployment 

processes into the production stage of the pipeline — helps 

achieve broader coverage of testing and monitoring.

Once code is deployed, teams need to understand what is 

happening within their applications as each release flows down the 

delivery pipeline. You can’t understand your pipeline, or correlate 

pipeline events with application performance and end-user 

experience, if you don’t understand what is happening inside your 

application.

This is where application testing and performance management 

come in to deliver code-to-cloud visibility. Observability delivers 

synthetic monitoring, analysis of real-user transactions, log 

analytics and metrics tracking, so teams can understand the 

state of their code from development through deployment. This 

understanding offers the depth that teams need to gain visibility 

into the state of each release across the development life cycle.

Splunk for DevOps

Splunk Core and Splunkbase Apps 

Splunk Observability Cloud



12 Immutable Rules for Observability   |   Splunk     14

Automates and enables you to do 
as much “as code”

Dramatically improve the productivity, efficiency 

and predictability of your organization by leveraging 

programmability wherever possible. Leverage APIs to 

automatically manage infrastructure resources (e.g., via 

a Kubernetes orchestrator), change control and code 

deployments (e.g., via Jenkins integration). Build closed-loop 

automation throughout your production environment to 

perform sophisticated operations triggered by real-time alerts, 

such as automatic rollbacks and remediation, bringing mean-

time-to-resolution (MTTR) down to machine time.

And in the “everything as code” movement, observability is 

no exception. The idea behind “observability as code” is that 

you develop, deploy, test and share observability assets such as 

detectors, alerts, dashboards, etc. as code.

Monitoring and alerting as code involve automated creation and 

maintenance of charts, dashboards and alerts as part of service 

life cycles. Doing so keeps visualizations and alerts current, 

prevents sprawl and allows you to maintain version control 

through a centralized repository, all without having to continuously 

manage each component manually. Leveraging available APIs and 

programmability also helps ensure that visualizations and alerts are 

consistent with best practices and enterprise policies throughout 

your organization.

Fig: An example of how to create an alert detector in Splunk using the Terraform provider

https://www.splunk.com/en_us/blog/devops/implement-observability-as-code-with-hashicorp-and-splunk.html


Observability is critical to your 
culture and business strategy
Observability is a critical business investment, especially 
when seconds of downtime can cost millions of dollars. It 
extends past DevOps teams to support resiliency and flawless 
customer experiences.



12 Immutable Rules for Observability   |   Splunk     16

Is a core part of business 
performance measurement

Reliability is critical when it comes to delivering high performing 

applications and flawless customer experiences, but you can’t 

do reliability without observability. Without observability, how 

do you know where to invest time and resources? If you’re not 

measuring availability, how do you know your reliability? If you’re 

not measuring performance, how do you know how well you’re 

really doing? These measurements need to go from development 

all the way through to production. In the data age, you need to know 

what’s going on at every stage of delivery.

Observability provides a window beyond CPU utilization and 

basic metrics into every layer of the stack, as well as outputs 

like user experience, SLX performance and other key metrics 

tailored to your business needs. In cloud-native environments, 

small upticks in a service can spiral into increased latency for 

even a specific customer. 

It’s important to understand the KPIs by which your business is 

measured and how the teams within your organization will consume 

the data. You’ll be able to:

•	 Anticipate what dimensions your monitoring data needs to have.

•	 Correlate data throughout your stack — from the underlying 

infrastructure to your applications and microservices.

•	 Correlate data across your entire digital business.

As a simple example, consider an application running on AWS that 

has users around the world. In order to get a complete picture of 

the end-user experience in each geographical region, it will be 

important to be able to slice-and-dice users, microservices and 

infrastructure based on AWS region or availability zone. Knowing 

ahead of time what kind of metadata is required will help you set up 

your visualizations right, the first time.



12 Immutable Rules for Observability   |   Splunk     17

Provides observability as a service

The DevOps paradigm of “you build it, you own it” 

boosts agility in part by decentralizing operational 

responsibility to individual teams. More people across 

the organization now need access to observability, 

and this decentralization can easily lead to 

fragmented tools and data. Fragmentation can lead 

to higher costs and, even worse, highly inefficient 

operations. And with cloud resources being unlimited, 

costs can be even harder to manage. 

Modern observability platforms should 

provide centralized management so teams and users have 

access controls and can gain transparency and control 

over consumption. Implementing clear best practices for 

observability across your business can not only cultivate a 

better developer experience, empowering them to work more 

efficiently and focus on building new features — it allows for 

improved cross-team collaboration, cost assessment and 

overall business performance. 



12 Immutable Rules for Observability   |   Splunk     18

Seamlessly embeds collaboration, 
knowledge management and 
incident response

While incidents may be inevitable, a strong observability solution 

can mitigate downtime and, perhaps, prevent it entirely — saving 

businesses money and improving the quality of life for on-call 

engineers. But most organizations haven’t realized they control 

their preparation for recovery. To respond to and resolve issues 

quickly (especially in a high-velocity deployment environment), 

you’ll need tools that facilitate efficient collaboration and speedy 

notification. Observability solutions should include automated 

incident response capabilities to engage the right expert to the 

right issue at the right time, all to significantly reduce downtime. 

Other best practices to consider as you aim for observability: 

•	 Evolve from tribal knowledge and hero-based incident 

resolution to standardized runbooks and knowledge bases. 

Providing all on-call engineers easy access to detailed context 

and suggestions about what has resolved similar issues in the 

past is a critical part of information sharing, collaboration and 

reducing MTTR. 

•	 Allow seamless access to third-party tools (e.g., error tracking) 

via web links so that your on-call engineers can use them. 

This way, engineers can seamlessly carry the context of the 

incident to other systems and continue troubleshooting 

without missing a beat.



12 Immutable Rules for Observability   |   Splunk     19

Scales to support future 
growth and elasticity

Invest based on your future observability needs rather than your 

current ones. How many containers do you have? What about the 

number of hosts in your environment, applications in production 

and code pushes per day? Per year? Answer these questions and 

you’ll realize why you need a scalable monitoring system (or will 

need one in the future). To meet the needs of any environment — 

no matter how large or complex — observability solutions should 

be able to ingest petabytes of log data and millions of metrics and 

traces, all while maintaining high performance. This ensures that 

your investments are future-proof.



12 Immutable Rules for Observability   |   Splunk     20

Building your observability 
strategy with Splunk 
Observability is critical to success but it’s not often an organization’s core 
competency. That’s why it’s important to partner with an observability solutions 
provider like Splunk that can support you on your cloud journey. 

Splunk Observability Cloud is the only full-stack, analytics-driven, enterprise-
grade observability solution. It gives users a seamless and streamlined 
workflow for monitoring, troubleshooting and investigation — making it easy 
to go from problem detection to resolution in minutes. Whether you’re a 
frontend developer who needs to know what customers are experiencing, a 
backend developer building APIs and services or an SRE who’s frequently on 
call, Splunk Observability Cloud helps you get the insight you need to quickly 
resolve outages.



12 Immutable Rules for Observability   |   Splunk     21

Splunk Observability Cloud helps 
you conquer complexity, scale, and 
performance bottlenecks with:

•	 One tightly integrated user experience, 
enabling seamless and context-rich 
workflows for monitoring, troubleshooting 
and investigation — eliminating data silos 
and swivel-chair monitoring. 

•	 End-to-end visibility based on open 
ingestion and correlation of ALL data — 
metrics, traces and logs. 

•	 Unmatched speed and scale powered by a 
streaming analytics engine to detect issues 
and get feedback in real time (seconds, not 
minutes). 

•	 AI-driven analytics that leverage the 
complete data set provide actionable 
insight, allowing you to proactively improve 
user experience.

•	 Centralized management, templatized best 
practices, cost control and observability-as-
a-service for maximum ROI.

Splunk Observability Cloud includes:

APM

On-Call

RUM

Synthetics Infrastructure 
Monitoring

Log Observer

Splunk
Observability
Cloud



Learn More
 
To learn more about Splunk Observability Cloud, visit 
our website and sign up for our free trial.

21-17608-SPLK-12-Immutable-Rules-for-O11y-108

Splunk, Splunk>, Data-to-Everything, D2E and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and 
other countries. All other brand names, product names or trademarks belong to their respective owners. © 2021 Splunk Inc. All rights reserved.

https://www.splunk.com/en_us/devops.html
https://www.splunk.com/en_us/observability/o11y-cloud-free-trial.html

