
WHITE PAPERWHITE PAPER

A guide to monitoring APIs
for performance

APIs in Action

2APIs in Action

WHITE PAPER

Table of Contents

Introduction .. 3

Understanding APIs ... 3

APIs in Action ... 4

Chapter One: Soap, Rest and Json .. 5

Chapter Two: Why Monitor APIs .. 5

Chapter Three: How to Monitor APIs .. 7

Chapter Four: Monitoring for SLAs ..11

Chapter Five: Splunk’s API Checks ..13

3APIs in Action

WHITE PAPER

Introduction
Thanks to the rise of microservices, the spread

of single page web apps and the continued dominance

of native mobile apps, APIs are the unsung heroes of

the modern web.

Early on, APIs proved a way for businesses to

differentiate themselves and integrate with other

systems, but some argue that they didn’t become

completely mainstream until the rise of social media.

As social media networks grew and gained more

consumer users, businesses began building and

leveraging APIs to allow users to share and embed

content into streams of social media interactions.

Today we use APIs to connect between multiple

social media platforms — for example, posting from

Instagram to Facebook or Twitter — or to connect to

sets of data, such as pinning our location on a map

so that we can check in or hail a ride. Many web and

mobile apps that we use today are built on top of other

APIs, such that they’re tightly dependent on those

APIs performing and returning data correctly, quickly,

securely and reliably.

Because APIs drive modern applications and

infrastructure, it’s critical that we monitor APIs

for performance.

In this white paper we’ll help you understand the basic

functions of APIs, why it’s important to monitor APIs,

and what types of features you should look for when

implementing systems to monitor API performance.

Understanding APIs
An API is a set of programming instructions and

standards for accessing a web-based software

application or service. APIs give developers instructions

about how to interact with services and can be used

to connect data between different systems. An API

describes the available functionality from a service,

how it can be used and accessed, and what formats it

will access for inputs and outputs.

Today entire businesses and applications are built on

open APIs, relying on the ability to pass data back and

forth between systems. Think of an API as a waiter at

a restaurant. At a restaurant you have a menu of items

you can order. Maybe you have specific instructions

about how you’d like your dinner order to be prepared.

When the waiter asks for your order you say, “I would

please like the filet mignon, medium-rare, with a side of

creamed spinach and fully-loaded baked potato with

no chives.”

Your waiter writes down your order, delivers to the

kitchen, picks up your food when it’s ready and serves

it to you at your table.

In this simple scenario the waiter’s role mirrors the role

of an API, except instead of delivering an exquisite meal,

an API delivers data. Like a waiter, the API takes a set of

instructions (a request) from a source (an application or

a developer), takes that request to a database, fetches

the data or facilitates some actions and then returns a

response to the source. APIs are messengers that keep

systems connected.

When it comes to sending and receiving API messages,

it’s important to know that APIs may be private

programmer APIs used within an internal organization

or they may be public, consumer-facing APIs. Private

APIs make businesses more agile, flexible and powerful.

Public APIs help businesses connect to offer new

integrations and build new partnerships.

4APIs in Action

WHITE PAPER

APIs in Action
Let’s look at a well-known company that relies on

public APIs.

The Weather Company collects weather data

from millions of endpoints and sources around the

globe. They store this data and make it accessible

to consumer-facing applications via hundreds of

different APIs.

Consider a widget on your home screen or desktop

that always displays current temperature and weather

conditions based on your location. Your device may not

have a thermometer or a barometer or any baked-in

technology that detects or predicts weather patterns,

but your device can send information about your

location to an API and return the correct data such as

the temperature and forecast based on your location.

Even if you’re not on the Weather Company website

or using one of the Weather Company’s native mobile

applications you may be interacting with data from a

Weather Company API responding to simple requests.

Now let’s compare that public API scenario to an

example of how APIs can be used to trigger tasks to

improve internal business processes.

Splunk Web Optimization, part of Splunk Synthetic

Monitoring, captures a number of performance metrics

for digital businesses and provides smart suggestions

for how to improve site performance. The optimization

tool can help teams identify when any changes to

a website introduce a regression in performance,

meaning a site or web app has some content that’s

making it load slower than it could.

Using the optimization tool’s API, the team at Splunk

can integrate performance testing into deployments

and identify any performance regressions introduced.

A request was built into the deployment process for

the optimization API that triggers a performance

scan to Splunk’s staging environment and posts the

details of the scan into our Slack chat channel. Now

we can use our existing ChatOps setup to notify the

team when anything we build in staging will make our

application slower.

In this scenario the API doesn’t simply return data

based on a request, but it also takes action based on a

request. Both the Weather Company API or the Splunk

API could be public or consumer-facing, meaning that

other systems could rely on these APIs to return data

or trigger specific actions.DATABASE WEATHER APP

5APIs in Action

WHITE PAPER

At their core, APIs are about requesting and receiving

data from a remote service. In this eBook, we are

focusing on web-based APIs, where the request and

response happen over HTTP. There are many different

ways to format these requests and responses. When

reading about APIs, you will see a wide variety of

acronyms or terms. Largely these are unimportant to

the broader concepts of APIs, their importance and

how to test and monitor them for performance.

Earlier we covered some examples of systems that

are dependent on data from APIs or that have core

functionality built on top of third-party APIs.

APIs are wonderful because they connect services

and let us pass data back and forth between

uniquely managed systems, but that connectivity and

interdependence creates vulnerabilities. When it comes

to the performance and availability, it’s important to

monitor the APIs that we depend on and the APIs that

we provide for others.

Here are a few high-level points that will help you find

your way:

• Different API formats may use different ways of

structuring request and response bodies; SOAP is

very structured, using XML. REST can use anything,

but usually uses JSON.

• Different API formats may use different HTTP

methods when making requests. Something like

SOAP might always use POST, while REST can use

GET, POST or even less common methods like

PUT or DELETE.

• Different formats may pass credentials or

authentication information in different ways.

Cookies could be used, or special HTTP headers,

or even query string parameters.

If you find yourself getting lost or confused, just

remember: APIs are all about sending a request and

getting data back. Everything else flows from this

simple idea.

CHAPTER ONE

SOAP, REST and JSON

CHAPTER TWO

Why Monitor APIs
Why API performance matters

When an API fails and disrupts the performance or

user experience on your site, this failure reflects on

your company. End users and customers likely won’t

recognize that a third-party could be at fault. And

depending on how critical that API is to a transaction

process, this failure could impact your bottom line

right away.

For example, if a key component of the checkout

process on your website is a location-based search

and you rely on a third-party API to provide the

search by location, when that API doesn’t work

correctly, your potential customers cannot

check out successfully.

6APIs in Action

WHITE PAPER

Or, imagine that you developed an application that

requires authentication from a social media platform.

If the API for that social media platform goes down,

your users might not be able to log into your system.

As a developer or a site owner you may decide that the

benefit of relying on the third-party service outweighs

the risk of these types of failures. In order to accurately

assess the risk and have visibility into the impact of

these services over time, it’s crucial that you monitor

the part of your site’s user flow that relies on an API.

If you have an open API that you’ve made available

to partners or developers, then you have a

responsibility to ensure that the API is available

and working as expected.

Or, let’s say that you’ve developed a new internal

API that passes order data from a mobile device

to a system in your product warehouse. Maybe it’s

critical that the data passes to the warehouse within

two minutes, or the entire production schedule will

be off. When you developed the API and tested it in

staging it always passed data successfully within

one minute, but when you launch the API and start

processing real requests you notice that the real

response time is creeping up closer and closer to

that two-minute threshold. Without active monitoring

on the API in production, your team might assume

that the developed API is fast enough based on

pre-production tests.

Note: If you host an API that other people rely on,

be sure to actively monitor that API in both pre-

production and production environments.

Whether it’s to keep tabs on your own APIs or see

the impact of external services that you rely on, it’s

important to monitor APIs for availability, functionality,

speed and performance. If you know you have an API

that’s been unreliable in the past and you’re not actively

monitoring that API, start the conversation with your

team and develop a plan to begin monitoring that

API today.

What to monitor

So now that you understand why it’s crucial to monitor

API performance, you also know that you should

consider both:

• APIs that your website or native application relies

on for critical data or processes, and

• APIs that you manage that customers, end users or

developers rely on for data or processes.

When monitoring both of these types of APIs, it’s

important to test:

• Availability: Is this API endpoint up? Is it returning

an error?

• Response time: How quickly is the API returning

responses? Is the response time degrading over

time? Is the response time worse in production

than in pre-production?

• Data validation: Is the API returning the correct

data in the right format?

• Multi-step processes: Can I successfully save and

reuse a variable from this API? Does authentication

work as expected? Can I complete a transaction

with data from this API?

• Backend performance: How much latency

or slowness exists in backend services when

communicating with APIs? Have we set up alerts

for poor performance?

These are just the basic concepts that your team

should be looking for when it comes to monitoring API

performance. In the next section we’ll cover how to

technically implement monitoring for APIs and what

types of features are important to build out robust,

flexible performance tests.

7APIs in Action

WHITE PAPER

If you have access to an external, proactive monitoring

system, monitoring a response from an API for

availability can be pretty simple and easy to execute

with basic uptime or ping-type checks. Define the

protocol or put in an endpoint, set the test to run

frequently from locations around the globe, and alert

on bad response codes or latency.

But what if you need to monitor more than availability?

There are a number of key features that your monitoring

solution will need to provide in order to fully test API

transactions. These are components of typical API

requests that you will need to configure in your tests

beyond, “What endpoint should I hit?”

Request headers

Depending on how a site or application works, request

headers may be a critical part of requirements for

an active monitoring test’s configuration in order to

effectively simulate a transaction. For example, if we

need to actively test the way that a checkout process

works when a visitor is cookied, then we’ll need some

way to set that cookie with a Request Header when we

build an active test on that transaction.

When we talk about request headers, we’re referring

to fields passed along in the header sections of HTTP

requests. Request headers can include rules and

settings to define how an HTTP transaction should

operate.

There is a standard set of supported request header

types that have specific names and purposes. Some

common examples of request headers would be:

• Authorization: Send credentials for basic HTTP

authentication to give permission for access.

• Cache-Control: Tell the browser how long a

resource is eligible to be cached and reused.

• Content-Type: Tell a server the MIME type of the

body of a request so that the server knows how to

parse the data.

• Cookie: Set a cookie to be stored in the browser so

we can track state or sessions.

Some developers may also implement custom

request headers with custom names. It’s common

to see custom request headers with a prefix of “X,”

for example: X-Http-Method-Override could override

the request method from something like POST to

another method like PUT or DELETE.

Request headers in API checks

Splunk’s API Check helps us monitor the availability,

response time and data quality for transactions with

APIs. With an API check, we can set request headers

with each request as part of a transaction.

Consider a scenario where we need to POST username

and password credentials to access some information.

Then once we’re logged in at that endpoint we need

to store and set a session ID in order to pre-populate

other components specific to our session.

When building the steps for an API check, we can click

+ Add a Request Header to supply one or more headers

at each request step.

In the example above, we’re using Splunk’s API check to:

1. Make a request to POST a username and password

 to an endpoint to log in.

2. Extract a session ID from the response body using

 JSON path and save that ID as a variable that can

 be reused in future steps.

3. Make a request to POST to a different endpoint

 with the session ID in the request headers.

CHAPTER THREE

How to Monitor APIs

8APIs in Action

WHITE PAPER

We could continue to add more functional steps to this

transaction or add an Assert step to confirm that the

session ID is set as expected.

Handling authentication

In the above example we used request headers to

send over a username and password for authentication.

Let’s take a minute to focus on the security aspect

of APIs and how we can consider this as we build

performance tests.

Authentication for an API defines who has permission

to access secure data or endpoints. This is especially

important for APIs sharing sensitive information, APIs

that allow end users to make changes, or for companies

that charge some cost for accessing data via API. And

while securing an API for an individual human end user

is one undertaking, there are additional considerations

as we authenticate systems for an increasing number

of non-human entities.

As APIs become more secure, proactive monitoring

systems are adapting to make it possible to access

secure systems externally.

Direct authentication

A good example of direct authentication is HTTP basic

authentication. HTTP basic authentication is a standard

part of HTTP, and it can be used for API endpoints

or any HTTP URL. You simply send a username and

password — encoded together in base64 — as

part of your request to the API. The benefit of HTTP

basic authentication is that it’s easy to implement

and is typically included in standard frameworks. On

the downside, HTTP basic authentication offers no

advanced options and may be easily decoded.

Another example of direct authentication

would be using API keys or tokens. API keys

are just a long string of hexadecimal digits, i.e.

34d83d84f28d146aeae0e32f7803c88d, that

can be sent instead of a username or password to

authenticate access to an API endpoint. API keys

are essentially the same as a set of username and

password credentials, but they provide a layer of

abstraction that is useful. For example, multiple end

users could share a single API key.

When using any type of direct authentication, it’s

important that you also use SSL/TLS or

https:// at the start of the API endpoint URL. Using

SSL/TLS will ensure that the HTTP basic authentication

credentials or API keys aren’t exposed in the URL.

Interested in learning more about SSL/TLS and how

to optimize for performance? There are a number of
excellent articles on the Zoompf blog.

HTTP basic authentication

If you are using basic authentication to secure your

APIs, it’s super simple to include that authentication

when configuring an external monitor to check for

API performance.

The most common and reliable way to set up a

monitoring request with HTTP basic authentication

is to go ahead and encode that username:password

value in base64 and send that value over in an

authorization header:

It’s important to note that while it’s easy to encode

usernames and passwords into base64, it’s also

very easy to reverse or decode so that a system can

authenticate a request. You can try this yourself with an
online base64 encoder/decoder. Because base64 is so

accessible, it’s important to protect this type of direct

authentication with SSL/TLS.

https://zoompf.com/blog/tag/ssl/
https://zoompf.com/blog/tag/ssl/
https://www.base64decode.org/
https://www.base64decode.org/

9APIs in Action

WHITE PAPER

API keys

From a monitoring standpoint, it’s fairly simple to

replicate the process of hitting an endpoint with an API

key in the URL or with request headers. Supply the key

and just remember that if it ever changes you’ll need to

update your monitoring test’s configuration as well.

Note: Different systems may accept API keys in

different ways — for example, as part of the POST

data instead of as a request header — so check with

the API you are monitoring to understand how to

properly transmit the API Key.

Ticket-based authentication

While there are certainly some conveniences to

implementing direct authentication, we may need

to add an additional layer of security to our APIs.

Ticket-based authentication systems rely on central

authentication servers that act as intermediaries,

accepting credentials from end users and then sending

back tickets, tokens or keys that allow the specific end

user to access only specific secured data. Ticket-based

authentication is ideal for any scenario where you’re

protecting sensitive information, allowing an API to

create objects or make changes or if you’re charging

some cost for use of your API.

Understanding ticket-based systems

We might think of ticket-based authentication as similar

to how we might obtain keys to test-drive vehicles.

Imagine that I’m selling my junker of a car on Craigslist.

You meet me at the local diner so you can give my car a

test drive. You show me your driver’s license. I say, “Hey!

You seem to be this nice person who I just met online. I

trust you absolutely. Here’s the key. Give her a spin and

bring her back in a few minutes.” That would be similar

to direct authentication in the sense that I’m giving the

car key directly to you based on your name.

Now imagine that I’m selling you a luxury vehicle from

a dealership. You meet me at the dealership and give

me your driver’s license. I don’t have one key that will

work for all of the cars on the lot. I have to take your

driver’s license and use it to register your information

to a computer system that will verify that you’re an

upstanding gentleperson. This will then unlock a box

where I can take out a key that will only work for the

vehicle you’re now registered to test drive. This is

similar to a ticket-based system in the sense that I’m

relying on a centralized system to distribute a key that’s

now connected to you through the ticket.

OAuth, Kerberos, single sign on and webforms are all

examples of ticket-based authentication systems.

You may even develop your own custom authentication

system. While there are many different ways to

implement this type of protocol, most ticket-based

systems share a similar structure in the sense that

you first make a request for a ticket or a token and then

use that ticket or token to access secured data

or endpoints.

The tickets in ticket-based authentication systems look

very similar to the API keys we discussed above. One

main difference is that the tickets are ephemeral. They

are only valid a short period of time and can be easily

revoked, which provides an extra layer of security.

Monitoring with ticket-based authentication

In order to effectively monitor an API that uses ticket-

based authentication you must be able to complete

multiple steps and save the ticket or token in a variable

that can be reused in future steps.

A simple example of this would be to make a request

with a username and password and some type of

specification in the header, then retrieve a token from

the system, save that token as a variable and then

make another request to an endpoint with that token

as a header.

10APIs in Action

WHITE PAPER

If you’re not already implementing some authentication

for your API, it’s critical that you start doing so to

protect your data and your systems. And, as you

increase security make sure that your external

monitoring systems also have the permission and

ability to monitor the performance and reliability

of your system. If you’re only monitoring your API

performance on the application side, you could miss

all sorts of connectivity problems preventing your end

users from accessing data or making changes through

your API.

Monitoring and validating data

When we’re monitoring a website in a browser we want

to go beyond checking the response code and confirm

that some content or images load on the page. If the

page returns a “200 OK” but it’s completely blank,

that’s something we’ll want to investigate right away.

The same concept applies when we’re monitoring API

endpoints. When monitoring API endpoints we want to

not only confirm that the response code is expected

but that the right data comes back in the right format,

too. Let’s walk through a simple use case for how to use

basic Extract and Assert options to validate that an API

returns data in the correct format.

A data validation example

Splunk Optimization has an open API that Splunk

users rely on to regularly pull data for reporting. It’s

important that when a Splunk user hits the endpoint for

their check with an API key that we return a “200 OK”

response code and the data set for the correct ID that

matches the endpoint.

We can create an external, synthetic test to hit the

check endpoint at a set frequency from multiple

locations and confirm that:

1. Response Code = 200, and

2. The check ID included in the JSON output

 matches the URL endpoint we’re hitting.

In the example that follows we’re using a Splunk API

Check to:

1. Make a request with an API key to Splunk API’s

 endpoint for real browser check data.

2. Assert that the response code contains the

 value ‘200.’

3. Extract the check ID from the JSON using

 JSON path.

 4. Assert that the check ID extracted from the JSON

 path is the expected value. This very simple user

 flow helps us test:

• Availability: The check will fail if the API returns a

response code that’s not 200 OK.

• Data Format: If the data comes back from the

API in a format other than JSON then the step to

extract a value using JSON path will fail the check.

• Data Quality: If we’re able to extract a value for the

ID but it doesn’t match the expected value, then

the assert step will fail the check.

For example, if we receive an alert that our external

monitor was unable to extract the check ID in JSON

we would want to visit our alert and inspect the output

or response body from the API endpoint. By looking

at the response body we could quickly see whether

the format was incorrect or whether the ID value was

missing from the output. This information would help us

start troubleshooting right away.

https://monitoring-api.rigor.com/docs?url=%2Fv2%2Fdocs#!/Comparison_Reports/getComparisonReports

11APIs in Action

WHITE PAPER

This is just one simple example of how to implement

robust monitoring for an API. If your current API tests

only monitor for response code and response time,

it might be time to consider adding some additional

criteria for data format and quality.

Write performance tests to assume failure

So far we’ve looked at how to monitor with request

headers, authentication and data validation in mind.

When it comes to writing performance tests, one

strategy is to write tests in a way that allows a system

to call an API and not receive data.

When writing code with lots of local calls, a wrapper

that calls to an external API often goes unnoticed with

the context of an application. If your test is designed

to alert when no data is present, this will help make

sure you don’t miss critical errors. Remember to make

your code resilient so that when it receives an error

message, mangled data or no response at all, it will

continue to function.

Earlier we touched on the vulnerabilities that arise from

interdependent systems that must pass data back

and forth on the web. As more and more applications

are structured on top of third-party APIs it’s critical to

businesses that partner APIs perform quickly, safely,

securely and reliably.

Businesses have developed a way to manage this risk,

and we typically refer to these contracts as “SLAs.”

What is an SLA?

A service-level agreement (commonly called an SLA)

is an agreement between two parties about what

services will be provided from one party to another. In a

broad sense this agreement could include any number

of services — everything ranging from custom support

response times to product delivery.

Often when SLAs are established between two

technology or software providers, the agreement will

outline both:

• Availability: What uptime percentage can be

guaranteed by the partner? How much time in

advance is required to notify a partner of planned

downtime or maintenance?

• Responsiveness: How quickly can my system

expect reply times from a partner’s system?

CHAPTER FOUR

Monitoring for SLAs
And one party might be entitled to a credit, refund,

or freedom to back out of a contract depending on

whether those SLAs are met and upheld.

For example, let’s imagine there’s a ride-sharing web

app that relies heavily on data from a third-party that

specializes in mapping. When this ride-sharing web

app agrees to work exclusively with one excellent

mapping provider, that mapping provider may

guarantee, “Your ride-sharing app will have access

to our map data 99.99% of the time and we will

notify your team at least three weeks in advance of

upcoming planned maintenance.”

The team managing the ride-sharing web app might say,

“Nice! That sounds like a great deal. Our users tolerate

some glitchiness and they never complain about it on

Twitter, so 99.99% uptime is more than enough. Three

weeks is plenty of time to let our customers know

about upcoming downtime. We agree to the terms, but

if your API is available less than 99.99% of the time we’ll

need to be refunded in full.”

Everyone signs on the dotted lines and shakes hands

and the ride-sharing web app builds a new feature that

hooks to pull data from the mapping provider’s API.

12APIs in Action

WHITE PAPER

How to ensure that you’re upholding your SLAs

As business owners for the mapping provider we might

say, “Hey, we need some data to get ahead of issues so

that we can make sure that we’re upholding our end of

the bargain. And, it would be nice if we could share that

data publicly with our partners at the ride-sharing web

app so they know they can trust our service.”

We could rely on the internal monitoring of our

application, but that might only give us part of the

picture. How do we know whether our map data

is available from our API to the end user outside of

our system? How do we confirm that data isn’t just

available but in the right format?

We can build a synthetic, external monitor to test

pulling data from our own API and put alerting in place

so that our engineers know right away if there’s any

type of issue that might be putting us close to breach

of our agreement.

The example above shows an alert from an API check in

Splunk Synthetic Monitoring.

With the proactive data that simulates real end users

interacting with our mapping system we can:

1. Get ahead of performance issues before they

 affect our real users, and

2. Share reports with our partner to demonstrate that

 our uptime is exactly what we promised.

How to enforce SLAs with your partners

As business owners of the ride-sharing web app we

may say, “Hey, that’s nice that you’re giving us these

reports, mapping provider friends, but we really

need to do our own due diligence and compare

some external data to your reports.” We could use

external API checks to monitor the performance of the

mapping API and confirm that the mapping API is in

fact up 99.99% of the time.

In the event that we see availability fall under the

SLA or if we see prolonged downtime that wasn’t

communicated three weeks in advance, we could use

our reports to start a conversation with our partner

about rectifying the breach of the agreement. We may

also use API checks to better understand how issues

with our partner’s API might affect our real users.

13APIs in Action

WHITE PAPER

API checks can be used by partners on both sides

of service-level agreements to confirm that the

agreement is being met according to the terms. For API

owners, proactive monitoring can help you catch issues

before they impact your partners and empower you

with reporting that’s easy to share with your partners.

For API end users, proactive monitoring can alert you

of third-party issues affecting your users and also help

offer an extra level of confidence that your partners are

upholding their agreement.

In the example that follows we can see a multi-step

API check on the mapping provider’s API that confirms

that data falls in an expected range and tracks the

availability of these requests.

At Splunk we’ve developed a framework for performance

tests that can help businesses understand whether APIs

are performing as expected.

With API checks we can:

• Track the availability of critical APIs.

• Capture and trend an API’s response time.

• Ensure API functionality by validating the API’s

response values and structure.

• Alert on any conditions indicating a broken or

poorly performing API, allowing teams to get ahead

of issues before they affect users or breach SLAs.

Remember: API checks can be used to monitor

both availability and responsiveness. Any use cases

we build for API checks should match our SLAs. If

our agreement is based on availability alone, we can

configure a check to simply hit the end point and then

rely on the uptime %. If our agreement is based on

how quickly an API returns data, then we can build

a multi-step check that pulls data from the API and

then compare the average response time to

our agreed standards.

CHAPTER FIVE

Splunk’s API Checks
Splunk’s API checks are built upon four simple concepts:

1. Making HTTP requests

2. Extracting data from responses

3. Saving data for use in additional requests

 or analysis

4. Making assertions about data and its format

The components are simple, but powerful. Like a

fractal, sometimes beautiful and complicated things

can be made by arranging the most basic building

blocks. Splunk’s API check uses simple pieces that

can be assembled together for test cases capable of

monitoring and verifying some of the most complicated

API flows.

WHITE PAPER

22-20298-Splunk-APIs-In-Action-TWP-107

www.splunk.comLearn more: www.splunk.com/asksales

Learn more about Splunk Synthetic Monitoring or download a free trial, today.

Splunk, Splunk> and Turn Data Into Doing are trademarks and registered trademarks of Splunk Inc. in the United States and other countries.
All other brand names, product names or trademarks belong to their respective owners. © 2022 Splunk Inc. All rights reserved.

Engineers worked closely with customers during the

development and beta testing of the API check to make

sure this simple approach would make the check easy

to understand while covering customer needs. One

of our beta testers was a company called Lookout,

a leader vendor of mobile security solutions. Here is

what Dean Ross-Smith, a Cloud Operations Engineer at

Lookout, had to say:

“The flexibility of Splunk’s new API Check allowed

Lookout to configure a check and monitor a critical

piece of infrastructure. We weren’t able to do this

before with other solutions.”

Designed with businesses in mind

Whether an API is powering a web property, a mobile

app or even the core infrastructure of your business,

Splunk’s API check ensures that API is available,

performing and functional in ways that users of any

technical level can understand.

Here are just a few of the business needs that our API

check can solve:

• Testing complex, multi-step API flows

• Monitoring availability and response time from

geographies around the world

• Tracking and enforcing performance SLAs of

third-party APIs

• Verifying correctness of API responses

• Testing the entire CRUD lifecycle of a data object

via an API

• Handling complex token-based API

authentication systems

• Monitoring application status pages

Takeaways

Do you have an application dependent on first-party

or third-party APIs? Do you provide data to your

customers via an API? Do you need great transparency

into the availability, functionality, and performance of

an API? The answer to any of those questions is the

new API check for Splunk Synthetic Monitoring. To

learn more about Splunk’s web performance products

or have a demo, contact us today.

https://www.splunk.com
https://www.splunk.com/en_us/talk-to-sales.html?expertCode=sales
https://www.splunk.com/en_us/products/synthetic-monitoring.html

