
How Well Do You
Understand the Costs
of Your Kubernetes
Workloads?
Find the waste. Tune the spend.
Keep the performance.

How Well Do You Understand the Costs of Your Kubernetes Workloads?

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 2

Introduction
Kubernetes has changed the way organizations build,

ship, and scale applications. It offers flexibility and speed,

allowing teams to iterate quickly and respond to demand.

But that speed introduces complexity. As environments

scale and shift constantly, it gets harder to understand

what’s running, why it matters, and what it costs. In fact,

Gartner forecasts worldwide public cloud end-user

spending to total $723 billion in 2025.

Teams collect mountains of telemetry. According to

Splunk’s The New Rules of Data Management report, 91%

of organizations surveyed say their overall spend on data

management has increased compared to the previous

year. They track system health and uptime, and collect

observability data from every corner of the environment.

But without context, all that data becomes expensive

noise. That context is often missing in Kubernetes

environments, where resources are short-lived and

scaling happens automatically. As a result, teams are

left guessing about resource usage, performance

bottlenecks, and cost drivers instead of taking action.

The result? Metrics everywhere, but no clear next move.

Teams watch the dashboards but still don’t know what

to fix or where to start. Observability bridges that gap by

correlating telemetry signals with cost and performance

data. It ties usage to cost, reveals what’s working and

what’s wasteful, and helps teams focus their efforts

where it counts.

Decisions about how to deploy and scale Kubernetes

workloads come with tradeoffs. Overprovisioning can keep

services stable, but it wastes budget. Underprovisioning

cuts costs, but risks downtime and degraded performance.

Practitioners need more than gut instinct. They need clear

insight into how workload configurations and scaling

decisions affect performance, reliability, and cost.

This e-book breaks Kubernetes cost management

into three practical steps: gaining visibility into what’s

running, optimizing high-impact workloads where

performance, cost, and reliability tradeoffs are most

significant, and staying ahead of drift as things change.

Observability enables each of these by tying resource

usage to cost, surfacing inefficiencies, and tracking how

changes affect performance over time.

For a deeper dive into troubleshooting and remediation

strategies in Kubernetes, see our companion guide,

Troubleshooting Kubernetes Environments.

Observability’s critical role in managing
Kubernetes performance and cost tradeoffs
allows teams to:

• Understand the health of applications and services

• Identify cost drivers and inefficiencies

• Make informed tradeoffs between performance and spend

https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
https://www.splunk.com/en_us/form/the-new-rules-of-data-management.html
https://www.splunk.com/en_us/form/troubleshooting-kubernetes-environments-with-observability.html

Basic availability

99.9%

99.99%

99.999%

99.9999%

$

$$

$$$

$$$$$

99%

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk

The illusion of control
Many teams believe they have a handle on their Kubernetes
environments. They can see what their services are doing, monitor
uptime, and track resource usage within their own silos. But beneath
the surface, operational blind spots are everywhere.

In many organizations, teams work independently with their own
tooling, standards, and observability practices. This decentralized
model can lead to overlapping resources, missed signals, and uneven
performance. And even when teams trust their own view, no one has
a clear picture of the entire system.

This fragmented visibility leads to what some call invisible
infrastructure. These are workloads, services, or clusters that
quietly consume resources without anyone questioning their
efficiency or value. These gaps often go unnoticed until costs spike,
performance drops, or an outage forces a deeper investigation.

In the early days of cloud computing, shadow IT took hold quickly.
Developers didn’t wait for approvals. They just swiped a credit
card and spun up what they needed. That freedom sped things up,
but it also created real problems. Teams ended up with duplicate
environments, surprise costs outside the official budget, and security
gaps that flew under the radar. With no central visibility, it was hard
to know what was running, where, or why. It worked for a while, until
it didn’t.

Kubernetes makes it easy to deploy and scale fast, but just like with
early cloud sprawl, what’s running and why often slips through the
cracks. Without shared standards or visibility, teams can’t track
usage or spot inefficiencies until it’s too late.

Platform engineering has emerged to help centralize tools, enforce
standards, improve the developer experience, and promote cross-
team collaboration. Platform teams reduce fragmentation and give
engineering leadership a clear view of what’s running, where it’s
happening, and of its impact.

So here’s the real question: Do you know what your Kubernetes
workloads are actually costing you? Some may be starving for
resources. Others are quietly draining budgets more than necessary.
And in any part of your stack, every extra “9” of uptime has a
price tag. The real challenge is knowing when that spend delivers
value and when it doesn’t.

Fragmentation happens when:

• Teams use different tools and observability standards

• Resources are duplicated or left idle

• No one team sees the full picture

https://www.splunk.com/en_us/form/the-rise-of-platform-engineering.html

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 4

Step 1

Visibility: See the whole picture
Understanding your Kubernetes environment starts with clear,
reliable visibility. That means going beyond system health checks
and uptime metrics. It means knowing how resources are being used,
who owns them, and how they contribute to cost. Without this level
of insight, optimization remains out of reach.

Step one is seeing where spend is actually going. Teams need to
identify which workloads are responsible, how costs break down
across teams or environments, and whether resource requests
match real usage. This kind of clarity often reveals overprovisioned
clusters or short-term spikes that lead to long-term overprovisioning.
These spikes typically lead to increased costs by requiring
teams to maintain excess capacity or by triggering expensive
autoscaling actions.

Cost attribution and forecasting make this visibility actionable.
Cost attribution ties usage to the teams or services responsible.
Forecasting projects future spend based on usage patterns.
With both, teams move from reacting to costs to planning with
confidence. They can budget more accurately and scale based on
actual needs, not guesswork.

Let’s say a DevOps team spots an unexpected spike in cloud
spend tied to a specific namespace. Using a Kubernetes-aware
observability tool, they trace it to a long-forgotten test service that
kept scaling. It turns out the workload was never shut down. With
cost attribution and efficiency metrics, they can pinpoint the issue,
retire the workload, and prevent the overage from repeating.

Cost attribution shows what’s running, who owns it, and what
it’s costing. When teams can trace services back to real owners,
it’s easier to clean up what’s no longer needed. Instead of chasing
mystery workloads, they can follow the trail and fix what’s out of
sync. That might mean tweaking usage, trimming spend, or shutting
things down altogether.

This kind of issue is common in environments where developers and
engineers have autonomy to scale services independently. Without
centralized reporting or budget tracking, unnecessary spend can
persist for weeks or even months. Visibility at the workload level, tied
to team or application ownership, is key to preventing this.

Effective visibility means that systems and
their data are:

• Accessible: Everyone can view the data they need

• Contextual: Insights are tied to real usage or cost

• Actionable: Teams know what to do next

Starvation Risk: This signal indicates the likelihood
that a workload will run out of CPU or memory
resources based on its historical usage patterns,
potentially leading to performance degradation,
errors, or instability.

Efficiency Rate: This metric measures how much
of the resources a workload has requested or
been allocated it is actually using. A low efficiency
rate means you’re paying for resources that the
workload isn’t consuming, highlighting waste.

Idle Resource Indicators: These point to
resources (such as nodes, pods, or specific
resource requests) that are provisioned and
consuming cost but are not actively being
used or are significantly underutilized over
a sustained period.

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 5

Forecasting helps teams stay ahead of change. By looking at past
usage, engineering and operations teams can identify trends,
seasonal spikes, and outliers. That makes it easier to set limits, plan
capacity, and spot problems early before they become expensive.
When you know your infrastructure’s baseline behavior, it becomes
much easier to detect when something is off.

Signals such as starvation risk, efficiency rate, and idle resource
indicators help surface hidden inefficiencies. These signals
are especially useful when aggregated and prioritized, helping
teams focus on the most urgent or high-impact opportunities for
optimization. Some platforms even summarize this at the cluster or
namespace level to highlight what needs attention first.

It is not enough to just monitor. Visibility should make information
accessible, contextual, and actionable. A dense dashboard with
hundreds of charts may look comprehensive, but without clear
ownership and prioritization, it only adds to the noise.

Visibility also supports accountability. When teams have access to
cost breakdowns, efficiency trends, and resource utilization tied to
their services, they are better equipped to make informed tradeoffs.
A team might realize that their aggressive autoscaling policy is
keeping reliability high but at an unsustainable cost. With the
right data, they can evaluate whether performance and spend are
in balance.

At the heart of all this is shared understanding. Visibility tools should
help engineering, operations, and business teams align infrastructure
usage with business goals and budget realities. That means having
honest conversations about expectations, workload performance,
and where optimization efforts will make the biggest difference.
When teams rely on the same signals and insights, it’s easier to align
priorities, reduce waste, and work better together.

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 6

Step 2

Optimization: Find the balance
Once teams achieve clear visibility into their Kubernetes
environments, the next challenge is turning insights into smart,
measurable improvements. Rather than reacting only to cost spikes
or performance issues, teams can create a repeatable process to
fine-tune workloads with purpose.

Think of this tension as a see-saw. On one end is performance. This
includes responsiveness, availability, and elements of resilience,
often measured in levels of uptime or service expectations. On the
other is cost control. Overprovisioning keeps services stable, but
wastes compute and memory. Underprovisioning saves money, but
risks latency, degraded performance, or outages.

The only way to strike the right balance is with context: How
important is this workload? Who depends on it? What level of
performance is acceptable, and what are you willing to spend to
maintain it?

In organizations without clear optimization signals, decisions about
scaling and tuning are often driven by habit, fear, or pressure to
avoid outages. Teams might default to doubling CPU and memory
allocations rather than risk being underpowered. But that approach
scales poorly, especially in large environments where small
inefficiencies add up quickly.

Historical workload behavior provides critical context for
better decision-making. Teams can analyze usage patterns,
peak load times, and past incidents to shape more thoughtful
scaling policies. Platforms that incorporate this kind of data can
provide recommendations or risk indicators that help prioritize
optimization efforts.

For example, a team managing a batch processing workload might
realize that their job runs daily with significant idle time in between.
Instead of maintaining fixed resources around the clock, they can
configure the service to scale down after execution and re-provision
only when needed. These decisions rely on a blend of observability,
historical trends, and confidence in automation.

Some platforms now provide optimization recommendations based
on actual usage over time. These recommendations suggest right-
sizing workloads to align requested CPU and memory with real-world
demand. They also help flag workloads with high starvation risk,
where services are likely to struggle to get the resources they need,
or those that are simply oversized.

Ask yourself:

• Is this workload mission-critical?

• Are we paying for performance that’s unnecessary?

• Can we consolidate or retire underused services?

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 7

Prioritization is key. In large Kubernetes environments, teams
cannot optimize everything at once. Observability tools that identify
the biggest opportunities, such as workloads that are significantly
underutilized or contributing disproportionately to spend, help focus
engineering time where it matters. In smaller environments, teams
may be able to address optimization more directly, but strong signals
still help them move faster and make better decisions.

Optimization means adjusting based on how infrastructure is actually
being used. The goal is to make sure every workload is worth what it
costs. Teams should ask themselves: Are we paying for performance
that users notice? Can we maintain reliability with fewer resources?
Are there services we can consolidate or shut down?

Balancing reliability and efficiency requires collaboration. SREs,
developers, and platform engineers need a common view into
workload behavior and tradeoffs. Without shared context, tuning
efforts can become misaligned or stall altogether.

Application tiering can also help guide optimization efforts. Not every
service can be treated as mission critical. Teams can categorize
workloads by business impact, from essential systems that require
high availability to best-effort services that can tolerate occasional
disruption. This allows for smarter tradeoffs based on criticality.
High-priority applications might justify higher spend for performance
and redundancy, while lower-tier workloads could be controlled
more aggressively.

It is equally important to recognize when optimization is not
necessary. There’s only so much time in your day, so it makes sense
to focus on optimizing the most expensive, the most business-
critical, or the most impactful to users. For example, a background
reporting job that costs very little to run and has minimal user
impact may not warrant immediate attention. Instead, teams
can focus on services that are high-volume, customer-facing, or
disproportionately expensive to operate.

Balance doesn’t happen. It’s built between what you need and what
you can afford. It takes human judgment, clear signals from your
environment, and the nerve to tune what others won’t touch.

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 8

Step 3

Operation: Keep efficiency on track
Optimization is not a one-time effort. Once workloads are tuned and
resources are right-sized, teams need to ensure those improvements
hold up over time. Kubernetes environments don’t sit still. They
are shaped by constant updates, shifting usage, and evolving team
priorities. These changes may seem incremental, but over time they
can quietly undo the benefits of earlier tuning efforts if not tracked
and managed.

The third phase of operational maturity is about sustaining
efficiency. Without consistent attention, even well-tuned
workloads gradually drift toward inefficiency. That drift might result
from evolving usage patterns, added features, or infrastructure
changes elsewhere in the environment. Sustaining gains
requires a combination of intelligent alerting, historical context,
and ways to spot issues before performance drops or costs
become unpredictable.

Anomaly detection plays a critical role here. When costs spike or
resource usage changes unexpectedly, teams need early signals.
This might include alerts when a service suddenly consumes more
memory than its baseline or when spend across a namespace
exceeds projected thresholds. These warnings can prompt timely
reviews before issues grow into bigger problems.

To make this process manageable, teams need ways to filter noise
and focus on meaningful trends. Alert fatigue is real, especially in
complex systems. Platforms that highlight high-impact signals, like
declining workload efficiency or rising starvation risk, make it easier
for teams to focus on what needs attention first.

Budgets and cost thresholds can also help reinforce accountability.
By assigning budgets to teams or projects, organizations create
natural checkpoints. If a team exceeds its expected spend, it
prompts a conversation; not as punishment, but as a trigger to re-
evaluate deployment decisions or usage policies.

Some platforms now assign scores or ratings to workloads,
namespaces, or clusters based on resource usage, risk signals,
and alignment with efficiency targets. These scores help teams
understand where to focus next, especially in large environments
with limited bandwidth. In addition, tracking by label or namespace
makes it easier to assign ownership, spot trends, and ensure
usage aligns with organizational priorities. This structure enables
broader conversations about policy enforcement, automation, and
resource governance.

Sustaining optimization requires:

• Ongoing alerting and monitoring

• Periodic reassessment of workloads

• Cross-team collaboration and ownership

Modern Observability

Signals
and alerts

Traditional Monitoring

Alert Investigate Fix

Alert Investigate Fix

Alert Investigate Fix

Alert Investigate Fix

Alert Investigate Fix

Alert Investigate Fix

In
si

gh
t a

nd visibility Decisions and actions

Optim
izatio

n

Learn and im

prove

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 9

Policy-driven frameworks make it easier to maintain consistency.
For example, if a platform detects that a new workload is exceeding
standard CPU requests, it can flag the deployment for review or, in
stricter environments, prevent it from launching. These checks help
ensure teams follow shared guidelines, identifying potential issues
early to maintain efficiency and support development velocity.

Efficiency over time depends on continuous feedback. That
feedback should be timely, targeted, and tied to the metrics that
matter. Teams need clear, consistent indicators to understand how
well they are maintaining efficiency. The system should help guide
that awareness through summaries, comparisons, and insights.

Let’s consider this scenario: a team optimized its most expensive
service last quarter. Without continued visibility, that progress can
start to erode. Perhaps a team adds a new feature, adding load. And
another team updates dependencies or removes autoscaling. Each
change seems small, but the impact builds. Sustaining efficiency
means spotting these shifts early and responding with the same
focus as the original optimization.

There is also value in periodically revalidating assumptions. For
example, workloads that were previously optimized for peak usage
may now serve a different role or face different load patterns.
Revisiting these decisions on a quarterly or biannual basis can help
teams catch misalignments early and avoid costly oversights.

Collaboration plays a role in this phase as well. While teams are
often autonomous, operational efficiency is a shared responsibility.
A platform team might surface broad trends across clusters, while
individual service owners bring the context needed to interpret and
act. The tools and processes supporting efficiency should encourage
coordination, not just visibility.

This phase of the cycle naturally leads back to the beginning.
Each insight, alert, and decision feeds the next round of visibility.
Observability is the thread that ties each phase of this journey
together, from initial insight to long-term improvement. The teams
that succeed in the long run are the ones that treat optimization not
as a finish line, but as part of their daily rhythm.

How Well Do You Understand the Costs of Your Kubernetes Workloads? | Splunk 10

Conclusion
Kubernetes has opened the door to fast, flexible, and scalable
application development. But as systems grow and evolve, so
does the complexity of managing them. Keeping environments
efficient, reliable, and cost-aware requires more than visibility. It
depends on context, operational discipline, and a commitment to
continuous improvement.

This e-book has walked through that cycle, broken into three
essential phases: visibility, optimization, and ongoing operation.
Together, they form the foundation for responsible Kubernetes
operations. These phases are not steps to cross off. They build on
each other, reinforcing a cycle that becomes more effective as teams
apply what they’ve learned and adapt to changing conditions.

Visibility is the first step, and arguably the most important. It enables
teams to understand how resources are used, where costs originate,
and who is responsible. Observability supports this by delivering
the data, context, and signals needed to make sense of complex
Kubernetes environments. Without it, decisions rely on guesswork.

Optimization follows with purpose. Teams tune workloads, adjust
configurations, and align infrastructure to demand. In this phase,
teams evaluate performance against cost in relation to the value
those workloads provide.

Ongoing operation builds resilience and keeps efficiency
sustainable. With policy-driven practices, anomaly detection, and
shared accountability, teams can preserve optimization gains and
prevent drift over time.

This cycle works because efficiency requires ongoing attention. It’s
a mindset rooted in continuous evaluation and adjustment, not a
one-time fix. Observability, when thoughtfully implemented, creates
the conditions for teams to revisit, revalidate, and re-optimize based

on real usage and shifting business needs. It also supports broader
challenges like budgeting across IT stacks, reducing workload silos,
and making cost-optimization a continuous priority.

This approach matters now more than ever. As cloud costs continue
to climb and engineering teams are asked to do more with less,
knowing how your infrastructure performs and what it costs
becomes a leadership issue. Whether you manage a platform, a
budget, or a business outcome, you need confidence that your
systems are operating with purpose and efficiency.

The organizations that lead in this space tend to share a few traits.
They regularly assess workload efficiency and focus improvements
on areas that drive the greatest business impact. They understand
the tradeoffs at play, particularly the ongoing tension between
performance and cost. Like a see-saw, that balance shifts. But with
the right visibility into usage, cost, and performance, teams can
manage that balance more effectively and with greater confidence.

Tooling is only part of the solution. The real value comes when
decisions about infrastructure are made with full awareness of the
tradeoffs among performance, reliability, and cost. Empowering
teams to act on that knowledge means they can respond faster,
scale smarter, and maintain control as complexity grows.

So now the question is yours to answer. The data is available, but the
real challenge lies in transforming it into actionable understanding.
Do you have the visibility and operational discipline to truly know
what your Kubernetes workloads are costing and why, or are you
allowing complexity to obscure hidden inefficiencies that silently
drain your budget?

The Kubernetes cost-performance loop:

• Visibility: Understand cost and usage in context

• Optimization: Right-size based on performance
and impact

• Operation: Maintain gains through alerting, policy,
and accountability

Splunk, Splunk>, Data-to-Everything, and Turn Data Into Doing are trademarks or registered trademarks of
Splunk Inc. in the United States and other countries. All other brand names, product names, or trademarks
belong to their respective owners. © 2025 Splunk LLC. All rights reserved.

25_CMP_ebook_How-well-do-you-understand-your-kubernetes-workloads_v6

Keep your Kubernetes
journey going
You’ve learned how to balance cost and performance.

Now dig into the details.

• Download Troubleshooting Kubernetes Environments to

learn how observability helps diagnose, fix, and prevent

critical issues

• Explore Splunk Kubernetes Monitoring

Start Your Free Trial of Splunk Observability Cloud. Gain deep

visibility into your Kubernetes costs and performance, and

identify optimization opportunities.

https://www.facebook.com/splunk
https://www.instagram.com/splunk/
https://www.linkedin.com/company/splunk
https://twitter.com/splunk
https://www.youtube.com/user/splunkvideos
https://www.splunk.com/en_us/form/troubleshooting-kubernetes-environments-with-observability.html
https://www.splunk.com/en_us/solutions/kubernetes-monitoring.html
https://www.splunk.com/en_us/download/o11y-cloud-free-trial.html

